Different types of impermeable fillers are usually incorporated into polymeric coating film to enhance the gas barrier properties. For instance, impermeable fillers are commonly used in barrier coating due to their larger surface, which in turn serve as barrier inclusions restricting the penetrant gas to diffuse through a longer tortuous pathway. Modeling gas transport in barrier coating can help determine the shelf-life of packaged food and reduce product development resources and time. In this paper, related tortuosity-based models corresponding to different filler geometries are outlined. This review emphasizes the emerging trends in modeling the tortuous pathway and the respective relative permeability model to predict the gas barrier performance in composite films used for barrier coating applications. We review models incorporating a range of factors, including different shapes, geometries, angular orientations, alignments, randomness in distribution, stacking, interspacing, and the polydispersity of fillers. The approaches employed to develop the tortuosity-based phenomenological models starting with simplified filler geometry and orientations to more complex morphological features of the composite films are elaborated.
The presence of the crystalline regions in poly(vinyl alcohol) coating films acts as barrier clusters forcing the gas molecules to diffuse in a longer pathway in the amorphous region of the polymer, where diffusivity and solubility are promoted in comparison. Evaluating the influence of crystalline regions on the oxygen barrier property of a semi-crystalline polymer is thus essential to prepare better coating films. Poly(vinyl alcohol) coating films with varying induced crystallinity were prepared on a polyethylene terephthalate (PET) substrate by drying at different annealing temperatures for 10 min. The coating films were first delaminated from the PET substrate and then characterized using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) techniques to determine and confirm the induced percentage of crystallinity. The barrier performance of the coating films, i.e., the oxygen transmission rate (OTR), was measured at room temperature. Results showed a decrease in the OTR values of poly(vinyl alcohol) film with an increase in the degree of crystallinity of the polymer matrix. Tortuosity-based models, i.e., modified Nielsen models, were adopted to predict the barrier property of the semi-crystalline PVOH film with uniform or randomly distributed crystallites. A modified Nielsen model for orderly distributed crystallites with an aspect ratio of 3.4 and for randomly distributed crystallites with an aspect ratio of 10.4 resulted in a good correlation with the experimental observation. For the randomly distributed crystallites, lower absolute average relative errors of 4.66, 4.45, and 5.79% were observed as compared to orderly distributed crystallites when the degree of crystallinity was obtained using FTIR, DSC, and XRD data, respectively.
The use of clay filler materials in dispersion coatings is a well-established method to provide improved barrier properties to the coated paper substrate, in particular lowering the water vapour transmission rate (WVTR) through the coating. In this paper we demonstrate the use of small spherical silica particles (∼100–220 nm) as an additive to a clay-latex coating formulation is able to provide further improvements to the barrier properties, when compared to the equivalent silica-free coatings. A significant decrease in both the water vapour transmission rate and the direct water uptake of water ({\text{Cobb}_{120}} wettability test) is observed for coatings containing as little as 1 % silica additive.
The increasing usage of petroleum-based compounds has prompted numerous environmental concerns. Consequently, there has been a steady rise in research on the synthesis of useful materials from natural sources. Paper technologists are seeking environmentally acceptable dry end and wet end additives. Among the bio-based resources available, nanocellulose is a popular sustainable nanomaterial additive in the paper industry because of its high strength, high oxygen barrier performance, low density, great mechanical properties, and biocompatibility. NC’s extensive hydroxyl groups provide a unique possibility to dramatically modify the hydrophilicity and charge of the surface in order to improve their potential applications in the paper industry. The current paper reviews two series of surface modifications, each with various subcategories, depending on why modified nanocellulose is added in the paper production: to improve barrier properties or to improve mechanical properties of packaging materials. The methods presented in this study use the minimum amount of chemically hazardous solvents to have the least impact on the environment. This review focuses on modifications of nanocellulose and their subsequent application in the papermaking. The knowledge and the discussion presented in this review will form a literature source for future use by various stakeholders and the sustainable paper manufacturers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.