Background Medicines of poor quality are currently prevailing problems undermining the quality of health care services in veterinary and human medicine. In this study, physico-chemical quality of veterinary medicines was evaluated. Methods A total of 959 veterinary medicines samples were collected during routine regulatory activities, i.e. pre-registration, re-registration, consignment checking and post-marketing surveillance, in Ethiopia. The samples were transported to Animal Products, Veterinary Drug and Feed Quality Assessment Centre (APVD-FQAC), which is the quality control laboratory of the Veterinary Drug and Feed Administration and Control Authority (VDFACA) and stored until analysis. The samples were subjected to visual inspection and chemical analysis following the United States, European or British Pharmacopoeias, or manufacturer’s methods. Results The findings revealed that 12 (1.3%) of tested products showed defects in physical characteristics, packaging, or labelling information, while a total of 66 (6.9%) samples of the investigated products failed to comply with the Pharmacopoeias and supplier’s specification limit set for assay. Of these, 60 samples did not comply with the minimum assay specification limit. Conclusion Overall, 8.2% of the investigated veterinary medicine samples did not comply with the specification set for the investigated quality attributes and thus were categorized as of poor quality. This indicates the need for continued strengthening of regulatory functions.
Many bioactive secondary metabolites with intriguing antibacterial, antiviral, and anticancer properties have been produced by Streptomyces species. The objective of this work is to use conventional and statistical techniques to improve the antibiotic production medium of Streptomyces monomycini RVE129, which was isolated from rhizospheric soil in Hawassa, Ethiopia. The main media components were chosen using the one factor at a time method and the Plackett-Burman design, which was then, further, optimized using the Box-Behnken Design for increased antibiotic production. On ISP4 medium (10 g/L starch, 1 g/L NaCl, 1 g/L MgSO4.7H2O, 2 g/L (NH4) 2SO4, 2 g/L CaCO3and 1 g/L K2HPO4, 0.1 g/L FeSO4·7H2O, 0.1 g/L MnCl2·4H2O, 0.1 g/L ZnSO4·7H2O), S. monomycini RVE129 produced the greatest amount of antibiotics. Starch and soybean meal were found to be the best sources of carbon and nitrogen for the strainRVE129. During the eighth day of incubation under shaking conditions, the best conditions for antibiotic synthesis were determined at a temperature of 30°C and a pH of 7.5. Plackett-Burman design identified K2HPO4, starch, and soybean meal as having the highest influence on antibiotic synthesis with a confidence level above 95%. The yield of producing antibiotics increased by 24.30% when the concentration of critical variables was further improved by using the Box-Behnken Design of the Response Surface approach. The optimum concentration was 20 g/L starch, 7.5 g/L s oybean meal, and 1.25 g/L K2HPO4. To the best of our knowledge, this is the first investigation into medium optimization for the production of the antibiotic from S. monomycini RVE129.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.