Telematics support by an expert through GG improves success rates and completion times while performing CPR in simulated clinical situations for nurses in simulated scenarios.
Precision agriculture is a growing sector that improves traditional agricultural processes through the use of new technologies. In southeast Spain, farmers are continuously fighting against harsh conditions caused by the effects of climate change. Among these problems, the great variability of temperatures (up to 20 °C in the same day) stands out. This causes the stone fruit trees to flower prematurely and the low winter temperatures freeze the flower causing the loss of the crop. Farmers use anti-freeze techniques to prevent crop loss and the most widely used techniques are those that use water irrigation as they are cheaper than other techniques. However, these techniques waste too much water and it is a scarce resource, especially in this area. In this article, we propose a novel intelligent Internet of Things (IoT) monitoring system to optimize the use of water in these anti-frost techniques while minimizing crop loss. The intelligent component of the IoT system is designed using an approach based on a multivariate Long Short-Term Memory (LSTM) model, designed to predict low temperatures. We compare the proposed approach of multivariate model with the univariate counterpart version to figure out which model obtains better accuracy to predict low temperatures. An accurate prediction of low temperatures would translate into significant water savings, as anti-frost techniques would not be activated without being necessary. Our experimental results show that the proposed multivariate LSTM approach improves the univariate counterpart version, obtaining an average quadratic error no greater than 0.65 °C and a coefficient of determination R2 greater than 0.97. The proposed system has been deployed and is currently operating in a real environment obtained satisfactory performance.
RESUMENLa Cadena Datos-Información-Conocimiento (DIC), denominada "Jerarquía de la Información" o "Pirámide del Conocimiento", es uno de los modelos más importantes en la Gestión de la Información y la Gestión del Conocimiento. Por lo general, la estructuración de la cadena se ha ido definiendo como una arquitectura en la que cada elemento se levanta sobre el elemento inmediatamente inferior; sin embargo no existe un consenso en la definición de los elementos, ni acerca de los procesos que transforman un elemento de un nivel a uno del siguiente nivel. En este artículo se realiza una revisión de la Cadena Datos-Información-Conocimiento examinando las definiciones más relevantes sobre sus elementos y sobre su articulación en la literatura, para sintetizar las acepciones más comunes. Se analizan los elementos de la Cadena DIC desde la semiótica de Peirce; enfoque que nos permite aclarar los significados e identificar las diferencias, las relaciones y los roles que desempeñan en la cadena desde el punto de vista del pragmatismo. Finalmente se propone una definición de la Cadena DIC apoyada en las categorías triádicas de signos y la semiosis ilimitada de Peirce, los niveles de sistemas de signos de Stamper y las metáforas de Zeleny. Palabras clave: Cadena Datos-Información-Conocimiento, pragmatismo, semiótica, signo, semiosis.A Review of the Data-Information-Knowledge Chain from the Pragmatism of Peirce
ABSTRACTThe Data-Information-Knowledge (DIC) Chain, known as "Information Hierarchy" or "Knowledge Pyramid", is one of the most important models in Information Management and Knowledge Management. In general, the structure of the DIC Chain has been defined as an architecture in which each
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.