Sharing personal narratives is a fundamental aspect of human social behavior as it helps share our life experiences. We can tell stories and rely on our background to understand their context, similarities, and differences. A substantial effort has been made towards developing storytelling machines or inferring characters' features. However, we don't usually find models that compare narratives. This task is remarkably challenging for machines since they, as sometimes we do, lack an understanding of what similarity means. To address this challenge, we first introduce a corpus of real-world spoken personal narratives comprising 10,296 narrative clauses from 594 video transcripts. Second, we ask non-narrative experts to annotate those clauses under Labov's sociolinguistic model of personal narratives (i.e., action, orientation, and evaluation clause types) and train a classifier that reaches 84.7% F-score for the highest-agreed clauses. Finally, we match stories and explore whether people implicitly rely on Labov's framework to compare narratives. We show that actions followed by the narrator's evaluation of these are the aspects non-experts consider the most. Our approach is intended to help inform machine learning methods aimed at studying or representing personal narratives.
Crowdsourcing has become widely used in supervised scenarios where training sets are scarce and difficult to obtain. Most crowdsourcing models in the literature assume labelers can provide answers to full questions. In classification contexts, full questions require a labeler to discern among all possible classes. Unfortunately, discernment is not always easy in realistic scenarios. Labelers may not be experts in differentiating all classes. In this work, we provide a full probabilistic model for a shorter type of queries. Our shorter queries only require "yes" or "no" responses. Our model estimates a joint posterior distribution of matrices related to labelers' confusions and the posterior probability of the class of every object. We developed an approximate inference approach, using Monte Carlo Sampling and Black Box Variational Inference, which provides the derivation of the necessary gradients. We built two realistic crowdsourcing scenarios to test our model. The first scenario queries for irregular astronomical timeseries. The second scenario relies on the image classification of animals. We achieved results that are comparable with those of full query crowdsourcing. Furthermore, we show that modeling labelers' failures plays an important role in estimating true classes. Finally, we provide the community with two real datasets obtained from our crowdsourcing experiments. All our code is publicly available 1 .
Sharing personal narratives is a fundamental aspect of human social behavior as it helps share our life experiences. We can tell stories and rely on our background to understand their context, similarities, and differences. A substantial effort has been made towards developing storytelling machines or inferring characters' features. However, we don't usually find models that compare narratives. This task is remarkably challenging for machines since they, as sometimes we do, lack an understanding of what similarity means. To address this challenge, we first introduce a corpus of real-world spoken personal narratives comprising 10,296 narrative clauses from 594 video transcripts. Second, we ask non-narrative experts to annotate those clauses under Labov's sociolinguistic model of personal narratives (i.e., action, orientation, and evaluation clause types) and train a classifier that reaches 84.7% F-score for the highest-agreed clauses. Finally, we match stories and explore whether people implicitly rely on Labov's framework to compare narratives. We show that actions followed by the narrator's evaluation of these are the aspects non-experts consider the most. Our approach is intended to help inform machine learning methods aimed at studying or representing personal narratives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.