This paper presents methods for collecting and analyzing physiological data during real world driving tasks to determine a driver's relative stress level. Electrocardiogram, electromyogram, skin conductance and respiration were recorded continuously while drivers followed a set route through open roads in the greater Boston area. Data from twenty-four drives of at least fifty minute duration were collected f or analysis. In Analysis I features from five minute intervals of data were used to distinguish three levels of driver stress with an accuracy of over 97% across multiple drivers and driving days. In Analysis II, continuous physiological features were correlated with a continuous metric of observable stressors showing that on a real-time basis metrics of skin conductivity and heart rate were most closely correlated with driver stress level. Such automatically calculated physiological features could be used to help manage non-critical in-vehicle information systems and improve the driving experience.
AbstractÐThe ability to recognize emotion is one of the hallmarks of emotional intelligence, an aspect of human intelligence that has been argued to be even more important than mathematical and verbal intelligences. This paper proposes that machine intelligence needs to include emotional intelligence and demonstrates results toward this goal: developing a machine's ability to recognize human affective state given four physiological signals. We describe difficult issues unique to obtaining reliable affective data and collect a large set of data from a subject trying to elicit and experience each of eight emotional states, daily, over multiple weeks. This paper presents and compares multiple algorithms for feature-based recognition of emotional state from this data. We analyze four physiological signals that exhibit problematic day-to-day variations: The features of different emotions on the same day tend to cluster more tightly than do the features of the same emotion on different days. To handle the daily variations, we propose new features and algorithms and compare their performance. We find that the technique of seeding a Fisher Projection with the results of Sequential Floating Forward Search improves the performance of the Fisher Projection and provides the highest recognition rates reported to date for classification of affect from physiology: 81 percent recognition accuracy on eight classes of emotion, including neutral.
Remote measurements of the cardiac pulse can provide comfortable physiological assessment without electrodes. However, attempts so far are non-automated, susceptible to motion artifacts and typically expensive. In this paper, we introduce a new methodology that overcomes these problems. This novel approach can be applied to color video recordings of the human face and is based on automatic face tracking along with blind source separation of the color channels into independent components. Using Bland-Altman and correlation analysis, we compared the cardiac pulse rate extracted from videos recorded by a basic webcam to an FDA-approved finger blood volume pulse (BVP) sensor and achieved high accuracy and correlation even in the presence of movement artifacts. Furthermore, we applied this technique to perform heart rate measurements from three participants simultaneously. This is the first demonstration of a low-cost accurate video-based method for contact-free heart rate measurements that is automated, motion-tolerant and capable of performing concomitant measurements on more than one person at a time.
Abstract-We present a simple, low-cost method for measuring multiple physiological parameters using a basic webcam. By applying independent component analysis on the color channels in video recordings, we extracted the blood volume pulse from the facial regions. Heart rate (HR), respiratory rate, and HR variability (HRV, an index for cardiac autonomic activity) were subsequently quantified and compared to corresponding measurements using Food and Drug Administration-approved sensors. High degrees of agreement were achieved between the measurements across all physiological parameters. This technology has significant potential for advancing personal health care and telemedicine.Index Terms-Autonomic nervous system, blood volume pulse (BVP), heart rate variability (HRV), independent component analysis (ICA), noncontact, photoplethysmography (PPG), remote sensing, respiration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.