Remote measurements of the cardiac pulse can provide comfortable physiological assessment without electrodes. However, attempts so far are non-automated, susceptible to motion artifacts and typically expensive. In this paper, we introduce a new methodology that overcomes these problems. This novel approach can be applied to color video recordings of the human face and is based on automatic face tracking along with blind source separation of the color channels into independent components. Using Bland-Altman and correlation analysis, we compared the cardiac pulse rate extracted from videos recorded by a basic webcam to an FDA-approved finger blood volume pulse (BVP) sensor and achieved high accuracy and correlation even in the presence of movement artifacts. Furthermore, we applied this technique to perform heart rate measurements from three participants simultaneously. This is the first demonstration of a low-cost accurate video-based method for contact-free heart rate measurements that is automated, motion-tolerant and capable of performing concomitant measurements on more than one person at a time.
Abstract-We present a simple, low-cost method for measuring multiple physiological parameters using a basic webcam. By applying independent component analysis on the color channels in video recordings, we extracted the blood volume pulse from the facial regions. Heart rate (HR), respiratory rate, and HR variability (HRV, an index for cardiac autonomic activity) were subsequently quantified and compared to corresponding measurements using Food and Drug Administration-approved sensors. High degrees of agreement were achieved between the measurements across all physiological parameters. This technology has significant potential for advancing personal health care and telemedicine.Index Terms-Autonomic nervous system, blood volume pulse (BVP), heart rate variability (HRV), independent component analysis (ICA), noncontact, photoplethysmography (PPG), remote sensing, respiration.
Non-contact video-based physiological measurement has many applications in health care and human-computer interaction. Practical applications require measurements to be accurate even in the presence of large head rotations. We propose the first end-to-end system for videobased measurement of heart and breathing rate using a deep convolutional network. The system features a new motion representation based on a skin reflection model and a new attention mechanism using appearance information to guide motion estimation, both of which enable robust measurement under heterogeneous lighting and major motions. Our approach significantly outperforms all current state-of-the-art methods on both RGB and infrared video datasets. Furthermore, it allows spatial-temporal distributions of physiological signals to be visualized via the attention mechanism.
Abstract-Remote measurement of the blood volume pulse via photoplethysmography (PPG) using digital cameras and ambient light has great potential for healthcare and affective computing. However, traditional RGB cameras have limited frequency resolution. We present results of PPG measurements from a novel five band camera and show that alternate frequency bands, in particular an orange band, allowed physiological measurements much more highly correlated with an FDA approved contact PPG sensor. In a study with participants (n=10) at rest and under stress, correlations of over 0.92 (p<0.01) were obtained for heart rate, breathing rate and heart rate variability measurements. In addition, the remotely measured HRV spectrograms closely matched those from the contact approach. The best results were obtained using a combination of cyan, green and orange (CGO) bands; incorporating red and blue channel observations did not improve performance. In short, RGB is not optimal for this problem: CGO is better. Incorporating alternative color channel sensors should not increase the cost of such cameras dramatically.Index Terms-heart rate variability (HRV), blood volume pulse (BVP), photoplethysmography (PPG), remote sensing.
Abstract-Remote detection of cognitive load has many powerful applications, such as measuring stress in the workplace. Cognitive tasks have an impact on breathing and heart rate variability (HRV). We show that changes in physiological parameters during cognitive stress can be captured remotely (at a distance of 3m) using a digital camera. A study (n=10) was conducted with participants at rest and under cognitive stress. A novel five band digital camera was used to capture videos of the face of the participant. Significantly higher normalized low frequency HRV components and breathing rates were measured in the stress condition when compared to the rest condition. Heart rates were not significantly different between the two conditions. We built a person-independent classifier to predict cognitive stress based on the remotely detected physiological parameters (heart rate, breathing rate and heart rate variability). The accuracy of the model was 85% (35% greater than chance).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.