Non-contact video-based physiological measurement has many applications in health care and human-computer interaction. Practical applications require measurements to be accurate even in the presence of large head rotations. We propose the first end-to-end system for videobased measurement of heart and breathing rate using a deep convolutional network. The system features a new motion representation based on a skin reflection model and a new attention mechanism using appearance information to guide motion estimation, both of which enable robust measurement under heterogeneous lighting and major motions. Our approach significantly outperforms all current state-of-the-art methods on both RGB and infrared video datasets. Furthermore, it allows spatial-temporal distributions of physiological signals to be visualized via the attention mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.