Background & Aims
Chronic inflammation promotes development and progression of colorectal cancer (CRC). We explored the distribution of Corticotropin-Releasing-Hormone (CRH)-family of receptors and ligands in CRC and their contribution in tumor growth and oncogenic EMT.
Methods
mRNA expression of CRH-family members was analyzed in CRC (N=56) and control (N=46) samples, 7 CRC cell lines and normal NCM460 cells. Immunohistochemical detection of CRHR2 was performed in 20 CRC and 5 normal tissues. Cell proliferation, migration and invasion were compared between Urocortin-2 (Ucn2)-stimulated parental and CRHR2-overexpressing (CRHR2+) cells in absence or presence of IL-6. CRHR2/Ucn2-targeted effects on tumor growth and EMT were validated in SW620-xenograft mouse models.
Results
CRC tissues and cell lines showed decreased mRNA and protein CRHR2 expression compared to controls and NCM460, respectively. The opposite trend was shown for Ucn2. CRHR2/Ucn2 signaling inhibited cell proliferation, migration, invasion and colony formation in CRC-CRHR2+ cells. In vivo, SW620-CRHR2+ xenografts showed decreased growth, reduced expression of EMT-inducers and elevated levels of EMT-suppressors. IL-1b, IL-6 and IL-6R mRNAs where diminished in CRC-CRHR2+ cells, while CRHR2/Ucn2 signaling inhibited IL-6-mediated Stat3 activation, invasion, migration and expression of downstream targets acting as cell cycle- and EMT-inducers. Expression of cell cycle- and EMT-suppressors was augmented in IL-6/Ucn2-stimulated CRHR2+ cells. In patients, CRHR2 mRNA expression was inversely correlated with IL-6R and vimentin levels and metastasis occurrence, while positively associated with E-cadherin expression and overall survival.
Conclusions
CRHR2 downregulation in CRC supports tumor expansion and spread through maintaining persistent inflammation and constitutive Stat3 activation. CRHR2low CRC phenotypes are associated with higher risk for distant metastases and poor clinical outcomes.
The transforming growth factor-β (TGF-β) superfamily is a family of structurally related proteins that includes TGF-β, activins/inhibins, and bone morphogenic proteins (BMPs). Members of the TGF-β superfamily regulate cellular functions such as proliferation, apoptosis, differentiation, and migration and thus play key roles in organismal development. TGF-β is involved in several human diseases, including autoimmune disorders and vascular diseases. Activation of the TGF-β receptor induces phosphorylation of serine/threonine residues and triggers phosphorylation of intracellular effectors (Smads). Once activated, Smad proteins translocate to the nucleus and induce transcription of their target genes, regulating various processes and cellular functions. Recently, there has been an attempt to correlate the effect of TGF-β with various pathological entities such as allergic diseases and cancer, yielding a new area of research known as “allergooncology," which investigates the mechanisms by which allergic diseases may influence the progression of certain cancers. This knowledge could generate new therapeutic strategies aimed at correcting the pathologies in which TGF-β is involved. Here, we review recent studies that suggest an important role for TGF-β in both allergic disease and cancer progression.
HIF-1α has a dual role in experimental TB. This finding could have therapeutic implications because combined treatment with 2-methoxyestradiol and antibiotics appeared to eliminate mycobacteria more efficiently than conventional chemotherapy during advanced disease.
Resistance to chemotherapy hinders the successful treatment of acute lymphoblastic leukemia (ALL). The multi-drug resistance-1 (MDR1/ABCB1) gene encodes P-glycoprotein (P-gp), which plays an important role in chemoresistance; however, its transcriptional regulation remains unclear. We investigated the role of YY1 in the regulation of MDR1 and its relation to ALL outcomes. Analysis of the MDR1 promoter revealed four putative YY1-binding sites, which we analyzed using a reporter system and ChIP analysis. YY1 silencing resulted in the inhibition of MDR1 expression and function. The clinical roles of YY1 and MDR1 expression were evaluated in children with ALL. Expression of both proteins was increased in ALL patients compared to controls. We identified a positive correlation between YY1 and MDR1 expression. High levels of YY1 were associated with decreased overall survival. Our results demonstrated that YY1 regulates the transcription of MDR1. Therefore, YY1 may serve as a useful prognostic and/or therapeutic target.
Brain cancer is one of the most malignant types of cancer in both children and adults. Brain cancer patients tend to have a poor prognosis and a high rate of mortality. Additionally, 20–40% of all other types of cancer can develop brain metastasis. Numerous pieces of evidence suggest that omega-3-polyunsaturated fatty acids (ω-PUFAs) could potentially be used in the prevention and therapy of several types of cancer. PUFAs and oxylipins are fundamental in preserving physiological events in the nervous system; it is, therefore, necessary to maintain a certain ratio of ω-3 to ω-6 for normal nervous system function. Alterations in PUFAs signaling are involved in the development of various pathologies of the nervous system, including cancer. It is well established that an omega-6-polyunsaturated fatty acid (ω-6 PUFA)-rich diet has a pro-tumoral effect, whereas the consumption of an ω-3 rich diet has an anti-tumoral effect. This review aims to offer a better understanding of brain cancer and PUFAs and to discuss the role and impact of PUFAs on the development of different types of brain cancer. Considering the difficulty of antitumor drugs in crossing the blood–brain barrier, the therapeutic role of ω-3/ω-6 PUFAs against brain cancer would be a good alternative to consider. We highlight our current understanding of the role of PUFAs and its metabolites (oxylipins) in different brain tumors, proliferation, apoptosis, invasion, angiogenesis, and immunosuppression by focusing on recent research in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.