Despite clinical recovery of patients from an episode of acute kidney injury (AKI), progression to chronic kidney disease (CKD) is possible on long-term follow-up. However, mechanisms of this are poorly understood. Here, we determine whether activation of angiotensin-II type 1 receptors during AKI triggers maladaptive mechanisms that lead to CKD. Nine months after AKI, male Wistar rats develop CKD characterized by renal dysfunction, proteinuria, renal hypertrophy, glomerulosclerosis, tubular atrophy, and tubulointerstitial fibrosis. Renal injury was associated with increased oxidative stress, inflammation, α-smooth muscle actin expression, and activation of transforming growth factor β; the latter mainly found in epithelial cells. Although administration of losartan prior to the initial ischemic insult did not prevent or reduce AKI severity, it effectively prevented eventual CKD. Three days after AKI, renal dysfunction, tubular structural injury, and elevation of urinary biomarkers were present. While the losartan group had similar early renal injury, renal perfusion was completely restored as early as day 3 postischemia. Further, there was increased vascular endothelial growth factor expression and an early activation of hypoxia-inducible factor 1 α, a transcription factor that regulates expression of many genes that help reduce renal injury. Thus, AT1 receptor antagonism prior to ischemia prevented AKI to CKD transition by improving early renal blood flow recovery, lesser inflammation, and increased hypoxia-inducible factor 1 α activity.
HIF-1α has a dual role in experimental TB. This finding could have therapeutic implications because combined treatment with 2-methoxyestradiol and antibiotics appeared to eliminate mycobacteria more efficiently than conventional chemotherapy during advanced disease.
Resistance to chemotherapy hinders the successful treatment of acute lymphoblastic leukemia (ALL). The multi-drug resistance-1 (MDR1/ABCB1) gene encodes P-glycoprotein (P-gp), which plays an important role in chemoresistance; however, its transcriptional regulation remains unclear. We investigated the role of YY1 in the regulation of MDR1 and its relation to ALL outcomes. Analysis of the MDR1 promoter revealed four putative YY1-binding sites, which we analyzed using a reporter system and ChIP analysis. YY1 silencing resulted in the inhibition of MDR1 expression and function. The clinical roles of YY1 and MDR1 expression were evaluated in children with ALL. Expression of both proteins was increased in ALL patients compared to controls. We identified a positive correlation between YY1 and MDR1 expression. High levels of YY1 were associated with decreased overall survival. Our results demonstrated that YY1 regulates the transcription of MDR1. Therefore, YY1 may serve as a useful prognostic and/or therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.