Natural fibers have been good substitute sources for swapping synthetic fibers and reinforcing polymer matrices because of their contributions in maintaining ecology, low energy requirement for processing, and maintaining sustainability issues. The aim of this study was to characterize a new fiber from Cyperus Dichrostachus A.Rich (CDA) plant. The CDA plant is a perennial nonwoody grass found in Ethiopian high lands and river basins. The fiber from this plant has a chemical composition of cellulose (60.27%), hemicellulose (22.72%), and lignin (16.59%) contents. It has a density of 1010 kg/m3 and good tenacity of 105.76 cN/Tex with low elongation of 4.88%. The thermal stability of Cyperus Dicrostachus A.Rich fiber (CDAF) was studied using TGA and DTG analyses and revealed that the cellulose degraded at a temperature of 377.1°C. Fourier transform-infrared spectroscopy analysis confirmed that CDAF is rich in cellulose content. Additionally, CDAF can play a vital role as a new reinforcement material and best alternative in bio composite industries. This will give competitive advantages when evaluated with other natural fibers and reveal that there are significant potential benefits in implementation of “cleaner production” in textile material production industries. Specifically, the replacement of synthetic fiber source with renewable biomass will reduce the environmental impact of these fibers. The future study will be focused on investigating the possible valorization route, especially in paper board, composite reinforcement, and bio composite applications.
The Textile industry is an important contributor to the GDP of countries worldwide. Both natural and synthetic fibers are the main raw materials for this sector. Environmental concerns, depletion of non-renewable resources, the high price of oil and limited oil reserves with consumer demand is driving research into cheap, biodegradable, sustainable, renewable and abundantly available green materials. Natural fibers are of the good substitute sources for swapping synthetic fibers and reinforcing polymer matrices because of their contributions in maintaining of ecology, nature of disposal, low energy requirement for processing and sustainability. The current research emphases on evaluating and determining the best extraction methods to process and treat cyperus Dichrostachus A.Rich plant in order to make the fiber suitable for variety of applications. Cyperus Dichrostachus A.Rich plant was treated with two conditions (cold and warm conditions) using statistically planned tests. Process conditions were optimised using central composite design methodology with the experimental design. Under optimised conditions, the strength and fiber yield of CDA fibers were significantly compared. The strength and fiber yield of the fiber was at maximized with optimized conditions and use for valorisation applications.
Natural fibers are of the good substitute sources for swapping synthetic fibers and reinforcing polymer matrices because of their contributions in maintaining of ecology, low energy requirement for processing and sustainability. The aim of this study is to characterize new fiber from Cyperus Dichrostachus A.Rich (CDA) plant. The CDA plant is a perennial non woody grass found in Ethiopian high lands and river basins. The fiber from this plant has good chemical composition of Cellulose (60.27%), hemicellulose (22.72%), lignin (16.59%) contents. It is light fiber having a density of 1010kg/m3 and good tenacity behaviour of 105.76cN/Tex with low elongation of 4.88%. The thermal stability of Cyperus Dicrostachys A,Rich fiber (CDAF) was studied using TGA and DTG analysis and revealed that the cellulose degraded at a temperature of 377.1°C. Fourier transform-infrared spectroscopy analysis confirmed that CDAF is rich in cellulose content. Furthermore, the properties of CDAF ensured that it can play a vital role as new reinforcement material and best alternative in bio composite industries. This will give competitive advantages when evaluated with other natural fibers reveals that there are significant potential benefits in implementation of “cleaner production” in textile material production industries. Specifically, replacement of synthetic fiber source with renewable biomass will reduce the environmental impact of these fibers. The future study will entail on investigating the possible valorization route especially in paper board, composite reinforcement and bio composite applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.