Worldwide efforts are being made to increase the use of renewable energy in order to reduce the emission of greenhouse gases. Africa is blessed with abundant resources of fossil fuels as well as renewable energy resources. Yet the continent, especially sub-Saharan Africa, is afflicted with power crisis. For example, in Nigeria, erratic electricity supplies will persist unless the government diversifies her energy sources and adopt new technologies available in the electricity generation sector. International Renewable Energy Agency (IRENA) has called for promotion of increased utilization of the continent's vast renewable energy resources to accelerate development. This review examines the perspective of renewable energy from biomass as an important strategy for a sustainable development in Nigeria. The paper also addresses the use of pyrolysis technology--an efficient thermo-chemical process for energy applications. However, the study presents on applications either to replace fossil fuel in an existing diesel engine-based power generation system or to generate electricity using a gas engine. The work also presented herein addresses the use of industrial-and non-industrial-derived biomass residues for energy purposes with specific example on solid palm oil residues in Nigeria. The current status of pyrolysis technology and its potential for commercial application for bio-fuel production using microwave-assisted pyrolysis in Nigeria are presented. This study will extensively review the recent work on microwave-assisted technology applied to the pyrolysis process. It is estimated that electrical power generation potential at about 500 MW can be obtained by using only the available residues from oil palm industry in Nigeria. This potential can be increased 10-fold with more emphasis on expansion and modernization of oil palm industry in Nigeria. This will benefit in terms of higher revenue from the palm oil export as well as higher renewable energy generation from its biomass residue using the microwave-assisted pyrolysis technology.
Carbon dioxide (CO 2) emission will increase due to the increasing global plastic demand. Statistical data shows that plastic production alone will contribute to at least 20% of the annual global carbon budget in the near future. Hence, several alternative methods are recommended to overcome this problem, such as bio-product synthesis. Algae consist of diverse species and have huge potential to be a promising biomass feedstock for a range of purposes, including bio-oil production. The convenient cultivation method of algae could be one of the main support for algal biomass utilization. The aim of this study is to forecast and outline the strategies in order to meet the future demand (year 2050) of plastic production and, at the same time, reduce CO 2 emission by replacing the conventional plastic with bio-based plastic. In this paper, the analysis for 25%, 50% and 75% CO 2 reduction has been done by using carbon emission pinch analysis. The strategies of biomass utilization in Malaysia are also enumerated in this study. This study suggested that the algal biomass found in Malaysia coastal areas should be utilized and cultivated on a larger scale in order to meet the increasing plastic demand and, at the same time, reduce carbon footprint. Some of the potential areas for macroalgae sea-farming cultivation in Sabah coastline (Malaysia), comprised of about 3885 km 2 (388,500 ha) in total, have been highlighted. These potential areas have the potential to produce up to 14.5 million tonnes (Mt)/y of macroalgae in total, which can contribute 370 Mt of phenol for bioplastic production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.