The influenza A(H1N1)pdm09 virus was detected in Cuba in May 2009. The introduction of a new virus with increased transmissibility into a population makes surveillance of the pandemic strain to the molecular level necessary. The aim of the present study was the molecular and phylogenetic analysis of pandemic influenza A(H1N1)pdm09 strains that circulated in Cuba between May 2009 and August 2010. Seventy clinical samples were included in the study. Nucleotide sequences from the hemagglutinin HA1 region segment were obtained directly from clinical samples. Genetic distances were calculated using MEGA v.5.05. A phylogenetic tree was constructed using MrBayes v.3.1.2 software. Potential N-glycosylation sites were predicted using NetNGlyc server 1.0. The 48 Cuban sequences of influenza A(H1N1)pdm09 obtained were similar to the A/California/07/2009 (H1N1) vaccine strain. Most of the Cuban strains belonged to clade 7. Cuban viruses showed amino acid changes, some of them located at three antigenic sites: Ca, Sa, and Sb. Two dominant mutations were detected: P83S (100%) and S203T (85.7%). Glycosylation site analysis revealed the gain of one site at position 162 in 13 sequences. The findings in this study contribute to our understanding of the progress of the influenza A(H1N1)pdm09 virus, since this virus is at the starting point of its evolution in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.