Summary A central theory of basal ganglia function is that striatal neurons expressing the D1 and D2 dopamine receptors exert opposing brain-wide influences. However, the causal influence of each population has never been measured at the whole-brain scale. Here, we selectively stimulated D1 or D2 receptor-expressing neurons while visualizing whole-brain activity with fMRI. Excitation of either inhibitory population evoked robust positive BOLD signals within striatum, while downstream regions exhibited significantly different and generally opposing responses consistent with – though not easily predicted from – contemporary models of basal ganglia function. Importantly, positive and negative signals within the striatum, thalamus, GPi, and STN were all associated with increases and decreases in single-unit activity, respectively. These findings provide direct evidence for the opposing influence of D1 and D2 receptor-expressing striatal neurons on brain-wide circuitry and extend the interpretability of fMRI studies by defining cell type-specific contributions to the BOLD signal.
Given our aging society and the prevalence of age-related hearing loss that often develops during adulthood, hearing loss is a common public health issue affecting almost all older adults. Moderate-to-moderately severe hearing loss can usually be corrected with hearing aids; however, severe-to-profound hearing loss often requires a cochlear implant (CI). However, post-operative CI results vary, and the performance of the previous prediction models is limited, indicating that a new approach is needed. For postlingually deaf adults (n de120) who received CI with full insertion, we predicted CI outcomes using a Random-Forest Regression (RFR) model and investigated the effect of preoperative factors on CI outcomes. Postoperative word recognition scores (WRS) served as the dependent variable to predict. Predictors included duration of deafness (DoD), age at CI operation (ageCI), duration of hearing-aid use (DoHA), preoperative hearing threshold and sentence recognition score. Prediction accuracy was evaluated using mean absolute error (MAE) and Pearson’s correlation coefficient r between the true WRS and predicted WRS. The fitting using a linear model resulted in prediction of WRS with r = 0.7 and MAE = 15.6 ± 9. RFR outperformed the linear model (r = 0.96, MAE = 6.1 ± 4.7, p < 0.00001). Cross-hospital data validation showed reliable performance using RFR (r = 0.91, MAE = 9.6 ± 5.2). The contribution of DoD to prediction was the highest (MAE increase when omitted: 14.8), followed by ageCI (8.9) and DoHA (7.5). After CI, patients with DoD < 10 years presented better WRSs and smaller variations (p < 0.01) than those with longer DoD. Better WRS was also explained by younger age at CI and longer-term DoHA. Machine learning demonstrated a robust prediction performance for CI outcomes in postlingually deaf adults across different institutes, providing a reference value for counseling patients considering CI. Health care providers should be aware that the patients with severe-to-profound hearing loss who cannot have benefit from hearing aids need to proceed with CI as soon as possible and should continue using hearing aids until after CI operation.
In preclinical studies, implanted electrodes can cause severe degradation of MRI images and hence are seldom used for chronic studies employing functional magnetic resonance imaging. In this study, we developed carbon fiber optrodes (optical fiber and electrode hybrid devices), which can be utilised in chronic longitudinal studies aiming to take advantage of emerging optogenetic technologies, and compared them with the more widely used tungsten optrodes. We find that optrodes constructed using small diameter (~130 μm) carbon fiber electrodes cause significantly reduced artifact on functional MRI images compared those made with 50 μm diameter tungsten wire and at the same time the carbon electrodes have lower impedance, which leads to higher quality intracranial LFP recordings. In order to validate this approach, we use these devices to study optogenetically-induced seizure-like afterdischarges in rats sedated with dexmedetomidine and compare these to sub (seizure) threshold stimulations in the same animals. The results indicate that seizure-like afterdischarges involve several extrahippocampal brain regions that are not recruited by subthreshold optogenetic stimulation of the hippocampus at 20 Hz. Subthreshold stimulation led to activation of the entire ipsilateral hippocampus, whereas afterdischarges additionally produced activations in the contralateral hippocampal formation, septum, neocortex, cerebellum, nucleus accumbens, and thalamus. Although we demonstrate just one application, given the ease of fabrication, we anticipate that carbon fiber optrodes could be utilised in a variety of studies that could benefit from longitudinal optogenetic functional magnetic resonance imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.