Hepatocellular carcinoma (HCC) is a highly malignant tumor with a poor prognosis. Treatment of HCC is complicated by the fact that the disease is often diagnosed at an advanced stage when it is no longer amenable to curative surgery, and current systemic chemotherapeutics are mostly inefficacious. Sirtuin 1 (SIRT1) is a class III histone deacetylase that is implicated in gene regulations and stress resistance. In this study, we found that SIRT1 is essential for the tumorigenesis of HCC. We showed that although SIRT1 was expressed at very low levels in normal livers, it was overexpressed in HCC cell lines and in a subset of HCC. Tissue microarray analysis of HCC and adjacent nontumoral liver tissues revealed a positive correlation between the expression levels of SIRT1 and advancement in tumor grades. Downregulation of SIRT1 consistently suppressed the proliferation of HCC cells via the induction of cellular senescence or apoptosis. SIRT1 silencing also caused telomere dysfunction-induced foci and nuclear abnormality that were clearly associated with reduced expressions of telomerase reverse transcriptase (TERT), and PTOP, which is a member of the shelterin complex. Ectopic expression of either TERT or PTOP in SIRT1-depleted cells significantly restored cell proliferation. There was also a positive correlation between the level of induction of SIRT1 and PTOP in human HCC. Finally, SIRT1-silencing sensitized HCC cells to doxorubicin treatment. Together, our findings reveal a novel function for SIRT1 in telomere maintenance of HCC, and they rationalize the clinical exploration of SIRT1 inhibitors for HCC therapy.
Sirtuin 1 (SIRT1) has been implicated in telomere maintenance and the growth of hepatocellular carcinoma (HCC). Nevertheless, the role of other sirtuins in the pathogenesis of HCC remains elusive. We found that sirtuin 2 (SIRT2), another member of the sirtuin family, also contributes to cell motility and invasiveness of HCC. SIRT2 is up-regulated in HCC cell lines and in a subset of human HCC tissues (23/45). Up-regulations of SIRT2 in primary HCC tumors were significantly correlated with the presence of microscopic vascular invasion (P 5 0.001), a more advanced tumor stage (P 5 0.004), and shorter overall survival (P 5 0.0499). Functional studies by short hairpin RNA-mediated suppression of SIRT2 expression in HCC cell lines revealed significant inhibition of motility and invasiveness. Depletion of SIRT2 also led to the regression of epithelial-mesenchymal transition (EMT) phenotypes, whereas the ectopic expression of SIRT2 in the immortalized hepatocyte cell line L02 promoted cell motility and invasiveness. Mechanistic studies revealed that SIRT2 regulates the deacetylation and activation of protein kinase B, which subsequently impinges on the glycogen synthase kinase-3b/b-catenin signaling pathway to regulate EMT. Conclusions: Our findings have uncovered a novel role for SIRT2 in HCC metastasis, and provide a rationale to explore the use of sirtuin inhibitors in HCC therapy.
When cells are challenged by hyperosmotic stress, one of the crucial adaptive responses is the expression of osmoprotective genes that are responsible for raising the intracellular level of compatible osmolytes such as sorbitol, betaine, and myo-inositol. This is achieved by the activation of the transcription factor called OREBP (also known as TonEBP or NFAT5) that specifically binds to the osmotic response element (ORE) or tonicity-responsive enhancer that enhances the transcription of these genes. Here we show that p38, a subgroup of the mitogen-activated kinases activated by hypertonic stress, and Fyn, a shrinkageactivated tyrosine kinase, are both involved in the hypertonic activation of OREBP/TonEBP. Inhibition of p38 by SB203580 or by the dominant negative p38 mutant partially blocked the hypertonic induction of ORE reporter (reporter gene regulated by ORE). Similarly, hypertonic activation of ORE reporter was partially blocked by pharmacological inhibition of Fyn or by a dominant negative Fyn and was attenuated in Fyn-deficient cells. Importantly, inhibiting p38 in Fyn-deficient cells almost completely abolished the hypertonic induction of ORE reporter activity, indicating that p38 and Fyn are the major signaling pathways for the hypertonic activation of OREBP/TonEBP. Further we show that the transactivation domain of OREBP/TonEBP is the target of p38-and Fyn-mediated hypertonic activation. These results indicate a dual control in regulating the expression of the osmoprotective genes in mammalian cells.
Aldose reductase (AR) has been implicated in osmoregulation in the kidney because it reduces glucose to sorbitol, which can serve as an osmolite. Under hyperosmotic stress, transcription of this gene is induced to increase the enzyme level. This mode of osmotic regulation of AR gene expression has been observed in a number of nonrenal cells as well, suggesting that this is a common response to hyperosmotic stress. We have identified a 132-base pair sequence ϳ1 kilobase pairs upstream of the transcription start site of the AR gene that enhances the transcription activity of the AR promoter as well as that of the SV40 promoter when the cells are under hyperosmotic stress. Within this 132-base pair sequence, there are three sequences that resemble TonE, the tonicity response element of the canine betaine transporter gene, and the osmotic response element of the rabbit AR gene, suggesting that the mechanism of osmotic regulation of gene expression in these animals is similar. However, our data indicate that cooperative interaction among the three TonE-like sequences in the human AR may be necessary for their enhancer function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.