The endoplasmic reticulum (ER) is a complex subcellular organelle composed of diverse structures such as tubules, sheets and tubular matrices. Flaviviruses such as Zika virus (ZIKV) induce reorganization of ER membranes to facilitate viral replication. Here, using 3D super resolution microscopy, ZIKV infection is shown to induce the formation of dense tubular matrices associated with viral replication in the central ER. Viral non-structural proteins NS4B and NS2B associate with replication complexes within the ZIKV-induced tubular matrix and exhibit distinct ER distributions outside this central ER region. Deep neural networks trained to distinguish ZIKV-infected versus mock-infected cells successfully identified ZIKV-induced central ER tubular matrices as a determinant of viral infection. Super resolution microscopy and deep learning are therefore able to identify and localize morphological features of the ER and allow for better understanding of how ER morphology changes due to viral infection.
Diffuse optical tomography (DOT) leverages near-infrared light propagation through tissue to assess its optical properties and identify abnormalities. DOT image reconstruction is an ill-posed problem due to the highly scattered photons in the medium and the smaller number of measurements compared to the number of unknowns. Limited-angle DOT reduces probe complexity at the cost of increased reconstruction complexity. Reconstructions are thus commonly marred by artifacts and, as a result, it is difficult to obtain an accurate reconstruction of target objects, e.g., malignant lesions. Reconstruction does not always ensure good localization of small lesions. Furthermore, conventional optimization-based reconstruction methods are computationally expensive, rendering them too slow for real-time imaging applications. Our goal is to develop a fast and accurate image reconstruction method using deep learning, where multitask learning ensures accurate lesion localization in addition to improved reconstruction. We apply spatial-wise attention and a distance transform based loss function in a novel multitask learning formulation to improve localization and reconstruction compared to single-task optimized methods. Given the scarcity of realworld sensor-image pairs required for training supervised deep learning models, we leverage physics-based simulation to generate synthetic datasets and use a transfer learning module to align the sensor domain distribution between in silico and real-world data, while taking advantage of cross-domain learning. Applying our method, we find that we can reconstruct and localize lesions faithfully while allowing real-time reconstruction. We also demonstrate that the present algorithm can reconstruct multiple cancer lesions. The results demonstrate that multitask learning provides sharper and more accurate reconstruction.
<div>Diffuse optical tomography (DOT) leverages near-infrared light propagation through tissue to assess its optical properties and identify abnormalities. </div><div>DOT image reconstruction from limited-angle data acquisition is severely ill-posed due to the highly scattered photons in the medium and the relatively small number of collected projections. Reconstructions are thus commonly marred by artifacts and, as a result, it is difficult to obtain accurate reconstruction of target objects, e.g., malignant lesions.</div><div>Reconstruction does not always ensure good localization of small lesions. Furthermore, conventional optimization-based reconstruction methods are computationally expensive, rendering them too slow for real-time imaging applications.</div><div>Our goal is to develop a fast and accurate image reconstruction method using deep learning, where multitask learning ensures accurate lesion localization in addition to improved reconstruction.</div><div>We apply spatial-wise attention and a distance transform based loss function in a novel multitask learning formulation to improve localization and reconstruction compared to single-task optimized methods.</div><div>Given the scarcity of real-world sensor-image pairs required for training supervised deep learning models,</div><div>we leverage physics-based simulation to generate synthetic datasets and use a transfer learning module to align the sensor domain distribution between in silico and real-world data, while taking advantage of cross-domain learning.</div><div>Both quantitative and qualitative results on phantom and real data indicate the superiority of our multitask method in the reconstruction and localization of lesions in tissue compared to state-of-the-art methods.</div><div>The results demonstrate that multitask learning provides sharper and more accurate reconstruction.</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.