Charge recombination of the primary radical pair in D1/D2 reaction centers from photosystem 2 has been studied by time-resolved fluorescence and absorption spectroscopy. The kinetics of the primary radical pair are multiexponential and exhibit at least two lifetimes of 20 and 52 ns. In addition, a third lifetime of approximately 500 ps also appears to be present. These multiexponential charge-recombination kinetics reflect either different conformational states of D1/D2 reaction centers, with the different conformers exhibiting different radical pair lifetimes, or relaxations in the free energy of the radical pair state. Whichever model is invoked, the free energies of formation of the different radical pair states exhibit a linear temperature dependence from 100 to 220 K, indicating that they are dominated by entropy with negligible enthalpy contributions. These results are in agreement with previous determinations of the thermodynamics that govern primary charge separation in both D1/D2 reaction centers [Booth, P.J., Crystall, B., Giorgi, L. B., Barber, J., Klug, D.R., & Porter, G. (1990) Biochim. Biophys. Acta 1016, 141-152] and reaction centers of purple bacteria [Woodbury, N.W.T., & Parson, W.W. (1984) Biochim. Biophys. Acta 767, 345-361]. It is possible that these observations reflect structural changes that accompanying primary charge separation and assist in stabilization of the radical pair state thus optimizing the efficiency of primary electron transfer.
Photosystem 2 reaction centre complexes prepared either by solubilisation with Triton X-100 and subsequent exchange into dodecyi maltoside or by a procedure involving a combination of dodecyl maltoside and LiClO,, were character&d in terms of chlorophyll a, pheophytin u, &carotene and cytochrome bS59 content. Time-resolved chlorophyll fluorescence decay kinetics were measured using both types of complexes. Our data show that the isolated photosystem two reaction centre complex contain, for two pheophytin a molecules, close to six chlorophyll n, two /?-carotene and one cytochrome b559. No major differences were observed in the composition or the kinetic characteristics measured in the samples prepared by the different procedures. Time-resolved fluorescence rn~sur~~~ indicate that more than 94% of the chlorophyll a in both preparations is coupled to the reaction centre complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.