In the absence of the Arp2/3 complex, fibroblast cells adopt a leading edge with filopodia-like protrusions (FLPs) and maintain an ability to move. In this study, it is proposed that formins are required for the extension of FLPs and myosin II concentrated in arc-like regions in between FLPs is required for coordinated advancement of these regions.
All parts of motile cells, including the plasma membrane, have to translocate in the direction of locomotion. Both directed intracellular membrane transport coupled with polarized endo- and exocytosis and fluid flow in the plane of the plasma membrane can contribute to this overall plasma membrane translocation. It remains unclear how strong a force is required to generate this flow. We numerically solve Stokes equations for the viscous membrane flow across a flat plasma membrane surface in the presence of transmembrane proteins attached to the cytoskeleton and find the membrane tension gradient associated with this flow. This gradient is sensitive to the size and density of the transmembrane proteins attached to the cytoskeleton and can become significant enough to slow down cell movement. We estimate the influence of intracellular membrane transport and actin growth and contraction on the tension gradient, and discuss possible ‘tank tread’ flow at ventral and dorsal surfaces.
Nuclear pore complexes (NPCs) control all traffic into and out of the cell nucleus. NPCs are molecular machines that simultaneously achieve high selectivity and high transport rates. The biophysical details of how cargoes rapidly traverse the pore remain unclear but are known to be mediated by interactions between cargo-binding chaperone proteins and natively unstructured nucleoporin proteins containing many phenylalanine-glycine repeats (FG nups) that line the pore's central channel. Here, we propose a specific and detailed physical mechanism for the high speed of nuclear import based on the elasticity of FG nups and on competition between individual chaperone proteins for FG nup binding. We develop a mathematical model to support our proposed mechanism. We suggest that the recycling of nuclear import factors back to the cytoplasm is important for driving high-speed import and predict the existence of an optimal cytoplasmic concentration of cargo for enhancing the rate of import over a purely diffusive rate.
Diffusion in cell biology is important and complicated. Diffusing particles must contend with a complex environment as they make their way through the cell. We analyze a particular type of complexity that arises when diffusing particles reversibly bind to elastically tethered binding partners. Using asymptotic analysis, we derive effective equations for the transport of both single and multiple particles in the presence of such elastic tethers. We show that for the case of linear elasticity and simple binding kinetics, the elastic tethers have a weak hindering effect on particle motion when only one particle is present, while, remarkably, strongly enhancing particle motion when multiple particles are present. We give a physical interpretation of this result that suggests a similar effect may be present in other biological settings.
A new study reports that dynamic actin fibers in cells on circular islands self-organize into a swirling counter-clockwise pattern and describes a basic cytoskeletal mechanism for the establishment of left-right asymmetry that is based on myosin contraction and twisting of the formin-actin filament.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.