The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg 2 to measure BAO to redshifts z < 0.7. Observations of neutral hydrogen in the Lyα forest in more than 150,000 quasar spectra (g < 22) will constrain BAO over the redshift range 2.15 < z < 3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyα forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance d A to an accuracy of 1.0% at redshifts z = 0.3 and z = 0.57 and measurements of H (z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyα forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D A (z) and H −1 (z) parameters to an accuracy of 1.9% at z ∼ 2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.
Epidemiological studies, using the probe Ca3, have shown that in a given patient population a single cluster of genetically related Candida albicans isolates usually predominates. The authors have investigated whether these local clusters are part of a single group, geographically widespread and highly prevalent as an aetiological agent of various types of candidiasis. An unrooted neighbour-joining tree of 266 infection-causing C. albicans isolates (each from a different individual) from 12 geographical regions in 6 countries was created, based on genetic distances generated by Ca3 fingerprinting. Thirty-seven per cent of all isolates formed a single genetically homogeneous cluster (cluster A). The remainder of isolates were genetically diverse. Using the maximum branch length within cluster A as a cut-off, they could be divided into 37 groups, whose prevalence ranged between 0.3% and 9%. Strains from cluster A were highly prevalent in all but one geographical region, with a mean prevalence across all regions of 41%. When isolates were separated into groups based on patient characteristics or type of infection, strains from cluster A had a prevalence exceeding 27% in each group, and their mean prevalence was 43% across all patient characteristics. These data provide evidence that cluster A constitutes a general-purpose genotype, which is geographically widespread and acts as a predominant aetiological agent of all forms of candidiasis in all categories of patients surveyed.
The structure of the Ascaris suum mitochondrial NAD-malic enzyme in binary complex with NAD has been solved to a resolution of 2.3 A by X-ray crystallography. The structure resembles that of the human mitochondrial enzyme determined in complex with NAD [Xu, Y., Bhargava, G., Wu, H., Loeber, G., and Tong, L. (1999) Structure 7, 877-889]. The enzyme is a tetramer comprised of subunits possessing four domains organized in an "open" structure typical of the NAD-bound form. The subunit organization, as in the human enzyme, is a dimer of dimers. The Ascaris enzyme contains 30 additional residues at its amino terminus relative to the human enzyme. These residues significantly increase the interactions that promote tetramer formation and give rise to different subunit-subunit interactions. Unlike the mammalian enzyme, the Ascaris malic enzyme is not regulated by ATP, and no ATP binding site is observed in this structure. Although the active sites of the two enzymes are similar, residues interacting with NAD differ between the two. The structure is discussed in terms of the mechanism and particularly with respect to previously obtained kinetic and site-directed mutagenesis experiments.
Deuterium isotope effects and 13C isotope effects with deuterium- and protium-labeled malate have been obtained for both NAD- and NADP-malic enzymes by using a variety of alternative dinucleotide substrates. With nicotinamide-containing dinucleotides as the oxidizing substrate, the 13C effect decreases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data are consistent with a stepwise chemical mechanism in which hydride transfer precedes decarboxylation of the oxalacetate intermediate as previously proposed [Hermes, J. D., Roeske, C. A., O'Leary, M. H., & Cleland, W. W. (1982) Biochemistry 21, 5106]. When dinucleotide substrates such as thio-NAD, 3-acetylpyridine adenine dinucleotide, and 3-pyridinealdehyde adenine dinucleotide that contain modified nicotinamide rings are used, the 13C effect increases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data, at face value, are consistent with a change in mechanism from stepwise to concerted for the oxidative decarboxylation portion of the mechanism. However, the increase in the deuterium isotope effect from 1.5 to 3 with a concomitant decrease in the 13C isotope effect from 1.034 to 1.003 as the dinucleotide substrate is changed suggests that the reaction may still be stepwise with the non-nicotinamide dinucleotides. A more likely explanation is that a beta-secondary 13C isotope effect accompanies hydride transfer as a result of hyperconjugation of the beta-carboxyl of malate as the transition state for the hydride transfer step is approached.(ABSTRACT TRUNCATED AT 250 WORDS)
Measurement of the initial rate of the malic enzyme reaction varying the concentration of NAD at several different fixed levels of Mg2+ (0.25-1.0 mM) and a single malate concentration gave a pattern which intersects to the left of the ordinate. Repetition of this initial velocity pattern at several additional malate concentrations and treatment in terms of a terreactant mechanism suggests an ordered mechanism in which NAD adds prior to Mg2+ which must add prior to malate. On the other hand, when a broader concentration range of Mg2+ (0.25-50 mM) is used, data are consistent with a random mechanism in which Mg2+ must add prior to malate. By use of product inhibition studies, pyruvate is competitive vs. malate and noncompetitive vs. NAD, while NADH is competitive vs. NAD and noncompetitive vs. malate. These results are consistent with the random addition of substrates and further suggest rapid equilibrium random release of products. Tartronate, a dead-end analogue of malate, is competitive vs. malate and noncompetitive vs. NAD. Thio-NAD is a slow substrate which is used at 2.4% the maximum rate of NAD. When used as a dead-end analogue of NAD, thio-NAD is competitive vs. NAD and gives a complex inhibition pattern vs. malate in which competitive inhibition is apparent at low concentrations of malate (less than 12.5 mM), and this changes to uncompetitive inhibition at high concentrations of malate (greater than 12.5 mM). These data are consistent with a steady-state random mechanism in the direction of oxidative decarboxylation in which Mg2+ adds in rapid equilibrium prior to malate.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.