The extent to which pre-Columbian societies altered Amazonian landscapes is hotly debated. We performed a basin-wide analysis of pre-Columbian impacts on Amazonian forests by overlaying known archaeological sites in Amazonia with the distributions and abundances of 85 woody species domesticated by pre-Columbian peoples. Domesticated species are five times more likely than nondomesticated species to be hyperdominant. Across the basin, the relative abundance and richness of domesticated species increase in forests on and around archaeological sites. In southwestern and eastern Amazonia, distance to archaeological sites strongly influences the relative abundance and richness of domesticated species. Our analyses indicate that modern tree communities in Amazonia are structured to an important extent by a long history of plant domestication by Amazonian peoples
AimThe accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset.LocationTropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1MethodsTwo recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons.ResultsThe two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%.Main conclusionsPantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.
Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basinwide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs.
The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate.
Acta bot. bras. 19(4): 913-926. 2005 Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil Palavras-chave : Savana, fitossociologia, fitofisionomia, fertilidade do soloABSTRACT -(A comparison of the woody vegetation and soil characteristics of a cerradão and a Cerrado sensu stricto in adjacents areas on dystrophic soils in eastern Mato Grosso State, Brazil). Cerrado sensu stricto and cerradão often occur side by side under similar edaphic and topographic conditions. The factors which contribute to the existence of cerradão in this situation are not well established. The objective of the present study was to compare the floristic composition and phytosociology of a Cerrado and cerradão on a dystrophic soil in eastern Mato Grosso and to determine whether higher soil fertility was contributing to the existence of the cerradão. Fifty 10 m×10 m plots were laid out in each vegetation type and a phytosociological survey was conducted of all trees with a minimum diameter of 5 cm at 30 cm above ground level. Soil samples were collected up to a depth of 2 m of soil profiles and from surface layer (0-10 and 10-20 cm) in each area. The two physiognomies showed distinct floristic, structural and phytosociological characteristics. The basal area (21.4 m 2 ha -1 ) and the mean heights (6.4 m) of the cerradão were greater than that of the cerrado sensu stricto (14.9 m 2 ha -1 and 3.7 m). The three most important species were Hirtella glandulosa Spreg., Sclerolobium paniculatum Vog. and Xylopia aromatica (Lam.) Mart. in the cerradão, representing 29% of the total Importance Value (IVI), and Qualea parviflora Mart., Davilla elliptica A. St.-Hil. and Roupala montana Aubl. in the cerrado sensu stricto, representing 21% of the total IVI. The soils of both areas were acid (pH < 5.0) and dystrophic (Ca 2+ < 0.4 cmol c kg -1 ) with high exchangeable aluminium levels (Al 3+ > 1.3 cmol c kg -1 ). The fertility of the soils of the two areas was not different to support the hypothesis that the occurrence of the cerradão was due to the higher fertility of its soil. However, the cerradão soil showed higher percentages of clay than the cerrado soil at all depths up to 2 m, which could result in a higher availability of water throughout the year for the trees. This is an aspect worth investigating in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.