Photonic processors are pivotal for both quantum and classical information processing tasks using light. In particular, linear optical quantum information processing requires both large-scale and low-loss programmable photonic processors. In this paper, we report the demonstration of the largest universal quantum photonic processor to date: a low-loss 12-mode fully tunable linear interferometer with all-to-all mode coupling based on stoichiometric silicon nitride waveguides.
Integrated photonics is an essential technology for optical quantum computing. Universal, phasestable, reconfigurable multimode interferometers (quantum photonic processors) enable manipulation of photonic quantum states and are one of the main components of photonic quantum computers in various architectures. In this paper, we report the realization of the largest quantum photonic processor to date. The processor enables arbitrary unitary transformations on its 20 input modes with a fidelity of (F Haar = 97.4%, F Perm = 99.5%), an average optical loss of 2.9 dB/mode, and high-visibility quantum interference (V HOM = 98%). The processor is realized in Si 3 N 4 waveguides.
Integrated photonics is an essential technology for optical quantum computing. Universal, phase-stable, reconfigurable multimode interferometers (quantum photonic processors) enable manipulation of photonic quantum states and are one of the main components of photonic quantum computers in various architectures. In this paper, we report the realization of the largest quantum photonic processor to date. The processor enables arbitrary unitary transformations on its 20 input modes with an amplitude fidelity of FHaar=97.4% and FPerm=99.5% for Haar-random and permutation matrices, respectively, an optical loss of 2.9 dB averaged over all modes, and high-visibility quantum interference with VHOM=98%. The processor is realized in Si3N4 waveguides and is actively cooled by a Peltier element.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.