The muscle-tendon properties of the semitendinosus and gracilis are substantially altered after harvesting, and these alterations may contribute to knee flexor weakness in the surgical limb. These deficits are more pronounced in knees with tendons that do not regenerate and are only partially offset by compensatory hypertrophy of other hamstring muscles.
Purpose: The present study identified the physiological and performance characteristics that are deterministic during a maximal 1500-m time trial and in paced 1500-m time trials, with an all-out last lap. Methods: Thirtytwo trained middle-distance runners (n=21 male, VO2peak: 72.1±3.2; n=11, female, VO2peak: 61.2±3.7 mL•kg -1 •min -1 ) completed a 1500-m time trial in the fastest time possible (1500FAST) as well as a 1500MOD and 1500SLOW trial whereby mean speed was reduced during the 0-1100-m by 5% and 10%, respectively. Anaerobic speed reserve (ASR), running economy (RE), the velocity corresponding with VO2peak (VVO2peak), maximal sprint speed (MSS) and maximal accumulated oxygen deficit (MAOD) were determined during additional testing. Carnosine content was quantified by proton magnetic resonance spectroscopy in the gastrocnemius and expressed as a Zscore to estimate muscle fibre typology. Results: 1500FAST time was best explained by RE and VVO2peak in female runners (adjusted r 2 =0.80, P<0.001), in addition to the 0-1100-m speed relative to VVO2peak in male runners (adjusted r 2 =0.72, P<0.001). Runners with a higher gastrocnemius carnosine Z-score (i.e., higher estimated percentage of type II fibres) and greater MAOD, reduced their last lap time to a greater extent in the paced 1500m trials. Neither ASR nor MSS were associated with last lap time in the paced trials. Conclusion: These findings suggest that VVO2 peak and RE are key determinants of 1500-m running performance with a sustained pace from the start, while a higher carnosine Z-score and MAOD are more important for last lap speed in tactical 1500-m races.
Musculoskeletal models typically use generic 2D models for the tibiofemoral (TFJ) and patellofemoral (PFJ) joints, with a hinge talocrural joint (TCJ), which are scaled to each subject׳s bone dimensions. Alternatively joints' measured kinematics in cadavers are well-predicted using 3D cadaver-specific models. These employ mechanisms constrained by the articulations of geometric objects fitted to the joint׳s surfaces. In this study, we developed TFJ, PFJ and TCJ mechanism-based models off MRIs for fourteen participants and compared the estimated kinematics with those from published studies modified to be consistent with mechanisms models and subject-specific anatomical landmarks. The models' parameters were estimated by fitting spheres to segmented articular cartilage surfaces, while ligament attachment points were selected from their bony attachment regions. Each participant׳s kinematics were estimated by ensuring no length changes in ligaments and constant distances between spheres' centres. Two parameters' optimizations were performed; both avoid singularities and one best matches the kinematic patterns off published studies. Sensitivity analysis determined which parameters the models were sensitive to. With both optimization methods, kinematics did not present singularities but correlation values were higher, exceeding 0.6, when matching the published studies. However, ranges of motion (ROM) were different between estimated and published studies. Across participants, models presented large parameter variation. Small variations were found between estimated- and optimized-parameters, and in the estimated-rotations and translations' means and ROM. Model results were sensitive to changes in distal tibia, talus and patella spheres' centres. These models can be implemented in subject-specific rigid-body musculoskeletal models to estimate joint moments and loads.
The aim of this study was to identify markers of training stress and characteristics of middle-distance runners related to the incidence of overreaching following overload training. Twenty-four highly-trained runners (n=16 male; VO2peak=73.3(4.3) mL·kg·min-1; n=8 female, VO2peak=63.2(3.4) mL·kg·min-1) completed 3 weeks of normal training (NormTr), 3 weeks of high-volume training (HVTr; a 10, 20 and 30% increase in training volume each successive week from NormTr), and a 1-week taper (TapTr; 55% exponential reduction in training volume from HVTr week 3). Before, and immediately after each training period, an incremental treadmill-running test was performed, while resting metabolic rate (RMR), subjective fatigue responses and various resting blood biomarkers were assessed. Muscle fiber typology of the gastrocnemius was estimated by quantification of muscle carnosine using proton magnetic resonance spectroscopy and expressed as a z-score relative to a non-athlete control group. Twelve runners were classified as functionally overreached (FOR) following HVTr (decreased running TTE), whereas the other twelve were classified as acutely fatigued (AF; no decrease in running TTE). The FOR group did not demonstrate systematic alterations in RMR, resting blood biomarkers or submaximal exercise responses compared to the AF group. Gastrocnemius carnosine z-score was significantly higher in FOR (-0.44 ± 0.57) compared to AF (-1.25 ± 0.49, p = 0.004, d = 1.53) and was also associated with changes in running TTE from pre- to post-HVTr (r=-0.55, p=0.005) and pre-HVTr to post-TapTr (r=-0.64, p=0.008). Muscle fiber typology is related to the incidence of overreaching and performance super-compensation following increased training volume and a taper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.