BackgroundWearable activity trackers are newly emerging technologies with the anticipation for successfully supporting aging-in-place. Consumer-grade wearable activity trackers are increasingly ubiquitous in the market, but the attitudes toward, as well as acceptance and voluntary use of, these trackers in older population are poorly understood.ObjectiveThe aim of this study was to assess acceptance and usage of wearable activity trackers in Canadian community-dwelling older adults, using the potentially influential factors as identified in literature and technology acceptance model.MethodsA mixed methods design was used. A total of 20 older adults aged 55 years and older were recruited from Southwestern Ontario. Participants used 2 different wearable activity trackers (Xiaomi Mi Band and Microsoft Band) separately for each segment in the crossover design study for 21 days (ie, 42 days total). A questionnaire was developed to capture acceptance and experience at the end of each segment, representing 2 different devices. Semistructured interviews were conducted with 4 participants, and a content analysis was performed.ResultsParticipants ranged in age from 55 years to 84 years (mean age: 64 years). The Mi Band gained higher levels of acceptance (16/20, 80%) compared with the Microsoft Band (10/20, 50%). The equipment characteristics dimension scored significantly higher for the Mi Band (P<.05). The amount a participant was willing to pay for the device was highly associated with technology acceptance (P<.05). Multivariate logistic regression with 3 covariates resulted in an area under the curve of 0.79. Content analysis resulted in the formation of the following main themes: (1) smartphones as facilitators of wearable activity trackers; (2) privacy is less of a concern for wearable activity trackers, (3) value proposition: self-awareness and motivation; (4) subjective norm, social support, and sense of independence; and (5) equipment characteristics matter: display, battery, comfort, and aesthetics.ConclusionsOlder adults were mostly accepting of wearable activity trackers, and they had a clear understanding of its value for their lives. Wearable activity trackers were uniquely considered more personal than other types of technologies, thereby the equipment characteristics including comfort, aesthetics, and price had a significant impact on the acceptance. Results indicated that privacy was less of concern for older adults, but it may have stemmed from a lack of understanding of the privacy risks and implications. These findings add to emerging research that investigates acceptance and factors that may influence acceptance of wearable activity trackers among older adults.
The goal of this study was to evaluate the potential of using the difference between the 1H NMR frequencies of water and N‐acetylaspartic acid (NAA) to measure brain temperature noninvasively. All water‐suppressed and non‐water‐suppressed 1H NMR spectra were obtained at a field strength of 4.7 T using a surface coil. Experiments performed on model solutions revealed a decrease in the difference between NMR frequencies for NAA and water as a linear function of increasing temperature from 14 to 45°C. Changing pH in the range 5.5–7.6 produced no discernible trends for concurrent changes in the slope and intercept of the linear relationship. There were minor changes in slope and intercept for solutions containing 80 or 100 mg of protein/ml versus no protein, but these changes were not considered to be of sufficient magnitude to deter the use of this approach to measure brain temperature. The protein content of swine cerebral cortex was found to remain constant from newborn to 1 month old (78 ± 12 mg/g; n = 41). Therefore, data collected for the model solution containing 80 mg of protein/ml were used as a calibration curve to calculate brain temperature in eight swine during control, hypothermia, ischemia, postischemia, or death, over a temperature range of 23–40°C. A plot of 61 temperatures determined from 1H NMR versus temperatures measured from an optical fiber probe sensor implanted 1 cm into the cerebral cortex showed excellent linear agreement (slope = 1.00 ± 0.03, r2 = 0.96). We conclude that 1H NMR spectroscopy presents a practical means of making noninvasive measurements of brain temperature with an accuracy of better than ± 1°C.
BackgroundThe emergence of smartphones and tablets featuring vastly advancing functionalities (eg, sensors, computing power, interactivity) has transformed the way mHealth interventions support chronic disease management for older adults. Baby boomers have begun to widely adopt smart devices and have expressed their desire to incorporate technologies into their chronic care. Although smart devices are actively used in research, little is known about the extent, characteristics, and range of smart device-based interventions.ObjectiveWe conducted a scoping review to (1) understand the nature, extent, and range of smart device-based research activities, (2) identify the limitations of the current research and knowledge gap, and (3) recommend future research directions.MethodsWe used the Arksey and O’Malley framework to conduct a scoping review. We identified relevant studies from MEDLINE, Embase, CINAHL, and Web of Science databases using search terms related to mobile health, chronic disease, and older adults. Selected studies used smart devices, sampled older adults, and were published in 2010 or after. The exclusion criteria were sole reliance on text messaging (short message service, SMS) or interactive voice response, validation of an electronic version of a questionnaire, postoperative monitoring, and evaluation of usability. We reviewed references. We charted quantitative data and analyzed qualitative studies using thematic synthesis. To collate and summarize the data, we used the chronic care model.ResultsA total of 51 articles met the eligibility criteria. Research activity increased steeply in 2014 (17/51, 33%) and preexperimental design predominated (16/50, 32%). Diabetes (16/46, 35%) and heart failure management (9/46, 20%) were most frequently studied. We identified diversity and heterogeneity in the collection of biometrics and patient-reported outcome measures within and between chronic diseases. Across studies, we found 8 self-management supporting strategies and 4 distinct communication channels for supporting the decision-making process. In particular, self-monitoring (38/40, 95%), automated feedback (15/40, 38%), and patient education (13/40, 38%) were commonly used as self-management support strategies. Of the 23 studies that implemented decision support strategies, clinical decision making was delegated to patients in 10 studies (43%). The impact on patient outcomes was consistent with studies that used cellular phones. Patients with heart failure and asthma reported improved quality of life. Qualitative analysis yielded 2 themes of facilitating technology adoption for older adults and 3 themes of barriers.ConclusionsLimitations of current research included a lack of gerontological focus, dominance of preexperimental design, narrow research scope, inadequate support for participants, and insufficient evidence for clinical outcome. Recommendations for future research include generating evidence for smart device-based programs, using patient-generated data for advanced data mining techniques, vali...
Scar formation following skin injury can be a major psychosocial and physiological problem. However, the mechanisms of scar formation are still not completely understood. Previous studies have shown that wound healing in oral mucosa is faster, associates with a reduced inflammatory response and results to significantly reduced scar formation compared with skin wounds. In the present study, we hypothesized that oral mucosal fibroblasts from human gingiva are inherently distinct from fibroblasts from breast and abdominal skin, two areas prone to excessive scar formation, which may contribute to the preferential wound healing outcome in gingiva. To this end, we compared the phenotype of human gingival and skin fibroblasts cultured in in vivo-like three-dimensional (3D) cultures that mimic the cells' natural extracellular matrix (ECM) niche. To establish 3D cultures, five parallel fibroblast lines from human gingiva (GFBLs) and breast skin (SFBLs) were seeded in high density, and cultured for up to 21 days in serum and ascorbic acid containing medium to induce expression of wound-healing transcriptome and ECM deposition. Cell proliferation, morphology, phenotype and expression of wound healing and scar related genes were analyzed by real-time RT-PCR, Western blotting and immunocytochemical methods. The expression of a set of genes was also studied in three parallel lines of human abdominal SFBLs. Findings showed that GFBLs displayed morphologically distinct organization of the 3D cultures and proliferated faster than SFBLs. GFBLs expressed elevated levels of molecules involved in regulation of inflammation and ECM remodeling (MMPs) while SFBLs showed significantly higher expression of TGF-β signaling, ECM and myofibroblast and cell contractility-related genes. Thus, GFBLs display an inherent phenotype conducive for fast resolution of inflammation and ECM remodeling, characteristic for scar-free wound healing, while SFBLs have a profibrotic, scar-prone phenotype.
BackgroundGeneral consumers can now easily access drug information and quickly check for potential drug-drug interactions (PDDIs) through mobile health (mHealth) apps. With aging population in Canada, more people have chronic diseases and comorbidities leading to increasing numbers of medications. The use of mHealth apps for checking PDDIs can be helpful in ensuring patient safety and empowerment.ObjectiveThe aim of this study was to review the characteristics and quality of publicly available mHealth apps that check for PDDIs.MethodsApple App Store and Google Play were searched to identify apps with PDDI functionality. The apps’ general and feature characteristics were extracted. The Mobile App Rating Scale (MARS) was used to assess the quality.ResultsA total of 23 apps were included for the review—12 from Apple App Store and 11 from Google Play. Only 5 of these were paid apps, with an average price of $7.19 CAD. The mean MARS score was 3.23 out of 5 (interquartile range 1.34). The mean MARS scores for the apps from Google Play and Apple App Store were not statistically different (P=.84). The information dimension was associated with the highest score (3.63), whereas the engagement dimension resulted in the lowest score (2.75). The total number of features per app, average rating, and price were significantly associated with the total MARS score.ConclusionsSome apps provided accurate and comprehensive information about potential adverse drug effects from PDDIs. Given the potentially severe consequences of incorrect drug information, there is a need for oversight to eliminate low quality and potentially harmful apps. Because managing PDDIs is complex in the absence of complete information, secondary features such as medication reminder, refill reminder, medication history tracking, and pill identification could help enhance the effectiveness of PDDI apps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.