BackgroundUganda is a low income country that continues to experience disease outbreaks caused by emerging and re-emerging diseases such as cholera, meningococcal meningitis, typhoid and viral haemorrhagic fevers. The Integrated Disease Surveillance and Response (IDSR) strategy was adopted by WHO-AFRO in 1998 as a comprehensive strategy to improve disease surveillance and response in WHO Member States in Africa and was adopted in Uganda in 2000. To address persistent inconsistencies and inadequacies in the core and support functions of IDSR, Uganda initiated an IDSR revitalisation programme in 2012. The objective of this evaluation was to assess IDSR core and support functions after implementation of the revitalised IDSR programme.MethodsThe evaluation was a cross-sectional survey that employed mixed quantitative and qualitative methods. We assessed IDSR performance indicators, knowledge acquisition, knowledge retention and level of confidence in performing IDSR tasks among health workers who underwent IDSR training. Qualitative data was collected to guide the interpretation of quantitative findings and to establish a range of views related to IDSR implementation.ResultsBetween 2012 and 2016, there was an improvement in completeness of monthly reporting (69 to 100%) and weekly reporting (56 to 78%) and an improvement in timeliness of monthly reporting (59 to 93%) and weekly reporting (40 to 68%) at the national level. The annualised non-polio AFP rate increased from 2.8 in 2012 to 3.7 cases per 100,000 population < 15 years in 2016. The case fatality rate for cholera decreased from 3.2% in 2012 to 2.1% in 2016. All districts received IDSR feedback from the national level. Key IDSR programme challenges included inadequate numbers of trained staff, inadequate funding, irregular supervision and high turnover of trained staff. Recommendations to improve IDSR performance included: improving funding, incorporating IDSR training into pre-service curricula for health workers and strengthening support supervision.ConclusionThe revitalised IDSR programme in Uganda was associated with improvements in performance. However in 2016, the programme still faced significant challenges and some performance indicators were still below the target. It is important that the documented gains are consolidated and challenges are continuously identified and addressed as they emerge.
BackgroundOn 6 February 2015, Kampala city authorities alerted the Ugandan Ministry of Health of a “strange disease” that killed one person and sickened dozens. We conducted an epidemiologic investigation to identify the nature of the disease, mode of transmission, and risk factors to inform timely and effective control measures.MethodsWe defined a suspected case as onset of fever (≥37.5 °C) for more than 3 days with abdominal pain, headache, negative malaria test or failed anti-malaria treatment, and at least 2 of the following: diarrhea, nausea or vomiting, constipation, fatigue. A probable case was defined as a suspected case with a positive TUBEX® TF test. A confirmed case had blood culture yielding Salmonella Typhi. We conducted a case-control study to compare exposures of 33 suspected case-patients and 78 controls, and tested water and juice samples.ResultsFrom 17 February–12 June, we identified 10,230 suspected, 1038 probable, and 51 confirmed cases. Approximately 22.58% (7/31) of case-patients and 2.56% (2/78) of controls drank water sold in small plastic bags (ORM-H = 8.90; 95%CI = 1.60–49.00); 54.54% (18/33) of case-patients and 19.23% (15/78) of controls consumed locally-made drinks (ORM-H = 4.60; 95%CI: 1.90–11.00). All isolates were susceptible to ciprofloxacin and ceftriaxone. Water and juice samples exhibited evidence of fecal contamination.ConclusionContaminated water and street-vended beverages were likely vehicles of this outbreak. At our recommendation authorities closed unsafe water sources and supplied safe water to affected areas.Electronic supplementary materialThe online version of this article (doi:10.1186/s12889-016-4002-0) contains supplementary material, which is available to authorized users.
Background: Since the declaration of the 10th Ebola Virus Disease (EVD) outbreak in DRC on 1st Aug 2018, several neighboring countries have been developing and implementing preparedness efforts to prevent EVD cross-border transmission to enable timely detection, investigation, and response in the event of a confirmed EVD outbreak in the country. We describe Uganda's experience in EVD preparedness.
BackgroundIn the absence of accurate data on trends and the burden of human rabies infection in developing countries, animal bite injuries provide useful information to bridge that gap. Rabies is one of the most deadly infectious diseases, with a case fatality rate approaching 100%. Despite availability of effective prevention and control strategies, rabies still kills 50,000 to 60,000 people worldwide annually, the majority of whom are in the developing world. We describe trends and geographical distribution of animal bite injuries (a proxy of potential exposure to rabies) and deaths due to suspected human rabies in Uganda from 2001 to 2015.MethodsWe used 2001–2015 surveillance data on suspected animal bite injuries, collected from health facilities in Uganda. To describe annual trends, line graphs were used and linear regression tested significance of observed trends at P<0.05. We used maps to describe geographical distribution of animal bites by district.ResultsA total of 208,720 cases of animal bite injuries were reported. Of these, 27% were in Central, 22% in Eastern, 27% in Northern and 23% in Western regions. Out of 48,720 animal bites between 2013 and 2015, 59% were suffered by males and 81% were persons aged above 5 years. Between 2001 and 2015, the overall incidence (per 100,000 population) of animal bites was 58 in Uganda, 76 in Northern, 58 in Central, 53 in Western and 50 in Eastern region. From 2001 to 2015, the annual incidence (per 100,000 population) increased from 21 to 47 (P = 0.02) in Central, 27 to 34 (P = 0.04) in Eastern, 23 to 70 (P = 0.01) in Northern and 16 to 46 (P = 0.001) in Western region. A total of 486 suspected human rabies deaths were reported, of which 29% were reported from Eastern, 28% from Central, 27% from Northern and 17% from Western region.ConclusionAnimal bite injuries, a potential exposure to rabies infection, and mortality attributed to rabies infection are public health challenges affecting all regions of Uganda. Eliminating rabies requires strengthening of rabies prevention and control strategies at all levels of the health sector. These strategies should utilize the “One Health” approach with strategic focus on strengthening rabies surveillance, controlling rabies in dogs and ensuring availability of post exposure prophylaxis at lower health facilities.
BackgroundOn 28 March, 2016, the Ministry of Health received a report on three deaths from an unknown disease characterized by fever, jaundice, and hemorrhage which occurred within a one-month period in the same family in central Uganda. We started an investigation to determine its nature and scope, identify risk factors, and to recommend eventually control measures for future prevention.MethodsWe defined a probable case as onset of unexplained fever plus ≥1 of the following unexplained symptoms: jaundice, unexplained bleeding, or liver function abnormalities. A confirmed case was a probable case with IgM or PCR positivity for yellow fever. We reviewed medical records and conducted active community case-finding. In a case-control study, we compared risk factors between case-patients and asymptomatic control-persons, frequency-matched by age, sex, and village. We used multivariate conditional logistic regression to evaluate risk factors. We also conducted entomological studies and environmental assessments.ResultsFrom February to May, we identified 42 case-persons (35 probable and seven confirmed), of whom 14 (33%) died. The attack rate (AR) was 2.6/100,000 for all affected districts, and highest in Masaka District (AR = 6.0/100,000). Men (AR = 4.0/100,000) were more affected than women (AR = 1.1/100,000) (p = 0.00016). Persons aged 30–39 years (AR = 14/100,000) were the most affected. Only 32 case-patients and 128 controls were used in the case control study. Twenty three case-persons (72%) and 32 control-persons (25%) farmed in swampy areas (ORadj = 7.5; 95%CI = 2.3–24); 20 case-patients (63%) and 32 control-persons (25%) who farmed reported presence of monkeys in agriculture fields (ORadj = 3.1, 95%CI = 1.1–8.6); and 20 case-patients (63%) and 35 control-persons (27%) farmed in forest areas (ORadj = 3.2; 95%CI = 0.93–11). No study participants reported yellow fever vaccination. Sylvatic monkeys and Aedes mosquitoes were identified in the nearby forest areas.ConclusionThis yellow fever outbreak was likely sylvatic and transmitted to a susceptible population probably by mosquito bites during farming in forest and swampy areas. A reactive vaccination campaign was conducted in the affected districts after the outbreak. We recommended introduction of yellow fever vaccine into the routine Uganda National Expanded Program on Immunization and enhanced yellow fever surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.