This paper evaluates the current state of life cycle impact assessment (LCIA) methods used to estimate potential eutrophication impacts in freshwater and marine ecosystems and presents a critical review of the underlying surface water quality, watershed, marine, and air fate and transport (F&T) models. Using a criteria rubric, we assess the potential of each method and model to contribute to further refinements of life cycle assessment (LCA) eutrophication mechanisms and nutrient transformation processes as well as model structure, availability, geographic scope, and spatial and temporal resolution. We describe recent advances in LCIA modeling and provide guidance on the best available sources of fate and exposure factors, with a focus on midpoint indicators. The critical review identifies gaps in LCIA characterization modeling regarding the availability and spatial resolution of fate factors in the soil compartment and identifies strategies to characterize emissions from soil. Additional opportunities are identified to leverage detailed F&T models that strengthen existing approaches to LCIA or that have the potential to link LCIA modeling more closely with the spatial and temporal realities of the effects of eutrophication.
The global and U.S. domestic effort to develop a clean energy economy and curb environmental pollution incentivizes the use of hydrogen as a transportation fuel, owing to its zero tailpipe pollutant emissions and high fuel efficiency in fuel cell electric vehicles (FCEVs). However, the hydrogen production process is not emissions free. Conventional hydrogen production via steam methane reforming (SMR) is energy intensive, coproduces carbon dioxide, and emits air pollutants. Thus, it is necessary to quantify the environmental impacts of SMR hydrogen production alongside the use-phase of FCEVs. This study fills the information gap, analyzing the greenhouse gas (GHG) and criteria air pollutant (CAP) emissions associated with hydrogen production in U.S. SMR facilities by compiling and matching the facility-reported GHG and CAP emissions data with facilities’ hydrogen production data. The actual amounts of hydrogen produced at U.S. SMR facilities are often confidential. Thus, we have developed four approaches to estimate the hydrogen production amounts. The resultant GHG and CAP emissions per MJ of hydrogen produced in individual facilities were aggregated to develop emission values for both a national median and a California state median. This study also investigates the breakdown of facility emissions into combustion emissions and noncombustion emissions.
To limit effluent impacts on eutrophication in receiving waterbodies, a small community water resource recovery facility (WRRF) upgraded its conventional activated sludge treatment process for biological nutrient removal, and considered enhanced primary settling and anaerobic digestion (AD) with co-digestion of high strength organic waste (HSOW). The community initiated the resource recovery hub concept with the intention of converting an energy-consuming wastewater treatment plant into a facility that generates energy and nutrients and reuses water. We applied life cycle assessment and life cycle cost assessment to evaluate the net impact of the potential conversion. The upgraded WRRF reduced eutrophication impacts by 40% compared to the legacy system. Other environmental impacts such as global climate change potential (GCCP) and cumulative energy demand (CED) were strongly affected by AD and composting assumptions. The scenario analysis showed that HSOW co-digestion with energy recovery can lead to reductions in GCCP and CED of 7% and 108%, respectively, for the upgraded WRRF (high feedstock-base AD performance scenarios) relative to the legacy system. The cost analysis showed that using the full digester capacity and achieving high digester performance can reduce the life cycle cost of WRRF upgrades by 15% over a 30-year period. deteriorating water quality in water bodies due to eutrophication and pollution from point-sources such as effluents from wastewater treatment facilities. In response, the U.S. Environmental Protection Agency (U.S. EPA) has implemented more stringent effluent quality standards [2]. In addition, much of the wastewater treatment infrastructure is in dire need of improvement due to age, wear, and tear. In 2013, the American Society of Civil Engineers' Infrastructure Report Card assigned both drinking water and wastewater infrastructures a grade of D + , indicating a considerable backlog of overdue maintenance and a pressing need for modernization [3]. With a growing population facing increased regulatory requirements, resource constraints, and financial challenges, communities are seeking more comprehensive and sustainable solutions to address multiple environmental challenges and maximize the recovery of water, energy, nutrients, and materials [1,4,5]. Municipal wastewater and other high strength organic wastes (HSOW) generated in cities are now regarded as a resource for water, energy, and nutrients [6-10].However, the environmental sustainability of wastewater systems goes beyond the treatment plants. It has been argued that many impacts occur at a larger watershed level or along upstream supply chains during energy, chemical, and material production [11,12]. These complex water issues are inherently intertwined and cannot be solved by traditional siloed water management approaches [1]. It is necessary to apply system-based tools or metrics and integrated assessment frameworks such as life cycle assessment (LCA) and life cycle cost assessment (LCCA) to measure trade-offs and develop op...
Using Greenhouse Gas Reporting Program data (GHGRP) and National Emissions Inventory data from 2014, we investigate U.S. refinery greenhouse gas (GHG) emissions (CO 2 , CH 4 , and N 2 O) and criteria air pollutant (CAP) emissions (VOC, CO, NO x , SO 2 , PM 10 , and PM 2.5 ). The study derives (1) combustion emission factors (EFs) of refinery fuels (e.g., refinery catalyst coke and refinery combined gas), (2) U.S. refinery GHG emissions and CAP emissions per crude throughput at the national and regional levels, and (3) GHG and CAP emissions attributable to U.S. refinery products. The latter two emissions were further itemized by source: combustion emission, process emission, and facility-wide emission. We estimated U.S. refinery product GHG and CAP emissions via energy allocation at the refinery process unit level. The unit energy demand and unit flow information were adopted from the Petroleum Refinery Life Cycle Inventory Model (PRELIM version 1.1) by fitting individual U.S. refineries. This study fills an important information gap because it (1) evaluates refinery CAP emissions along with GHG emissions and (2) provides CAP and GHG emissions not only for refinery main products (gasoline, diesel, jet fuel, etc.) but also for refinery secondary products (asphalt, lubricant, wax, light olefins, etc.).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.