Although many factors have been implicated in the docking steps that precede vesicle fusion with a target membrane, few similarities have been found between them. New evidence suggests that at least some of these factors form related multimeric complexes that may help to explain the mechanism of vesicle docking.
High-throughput omics technologies generate huge datasets on the protein, transcript, lipid, and metabolite content of cells. By integrating and analyzing these data, systems biologists study complex networks of physical and functional interactions that go beyond the traditional focus on individual proteins or linear pathways. Many cell biologists have greeted these developments with healthy skepticism, complaining that long lists of genes or “hairballs” of interactions provide little insight into biological questions of genuine meaning. As omics techniques move beyond acquisition into hypothesis-driven applications, the chasm between systems biologists and cell biologists is narrowing and the benefits of working together are increasingly clear. While cell biologists need omics and computer analyses to extend their understanding of biological processes, omics scientists need cell biologists to help them interpret and use their vast amounts of data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.