Protonated betaine bis(trifluoromethylsulfonyl)imide is an ionic liquid with the ability to dissolve large quantities of metal oxides. This metal-solubilizing power is selective. Soluble are oxides of the trivalent rare earths, uranium(VI) oxide, zinc(II) oxide, cadmium(II) oxide, mercury(II) oxide, nickel(II) oxide, copper(II) oxide, palladium(II) oxide, lead(II) oxide, manganese(II) oxide, and silver(I) oxide. Insoluble or very poorly soluble are iron(III), manganese(IV), and cobalt oxides, as well as aluminum oxide and silicon dioxide. The metals can be stripped from the ionic liquid by treatment of the ionic liquid with an acidic aqueous solution. After transfer of the metal ions to the aqueous phase, the ionic liquid can be recycled for reuse. Betainium bis(trifluoromethylsulfonyl)imide forms one phase with water at high temperatures, whereas phase separation occurs below 55.5 degrees C (temperature switch behavior). The mixtures of the ionic liquid with water also show a pH-dependent phase behavior: two phases occur at low pH, whereas one phase is present under neutral or alkaline conditions. The structures, the energetics, and the charge distribution of the betaine cation and the bis(trifluoromethylsulfonyl)imide anion, as well as the cation-anion pairs, were studied by density functional theory calculations.
A green solvent extraction process for the separation of cobalt from nickel, magnesium and calcium in chloride medium was developed, using undiluted phosphonium-based ionic liquids as extractants. Cobalt was extracted to the ionic liquid phase as the tetrachlorocobaltate(II) complex, leaving behind nickel, magnesium and calcium in the aqueous phase. Manganese is interfering in the separation process. The main advantage of this ionic liquid extraction process is that no organic diluents have to be added to the organic phase, so that the use of volatile organic compounds can be avoided. Separation factors higher than 50 000 were observed for the cobalt/nickel separation from 8 M HCl solution. After extraction, cobalt can easily be stripped using water and the ionic liquid can be reused as extractant, so that a continuous extraction process is possible. Up to 35 g L −1 of cobalt can be extracted to the ionic liquid phase, while still having a distribution coefficient higher than 100. Instead of hydrochloric acid, sodium chloride can be used as a chloride source. The extraction process has been upscaled to batch processes using 250 mL of ionic liquid. Tri(hexyl)tetradecylphosphonium chloride, tri(butyl)-tetradecylphosphonium chloride, tetra(octyl)phosphonium bromide, tri(hexyl)tetradecylphosphonium bromide and Aliquat 336 have been tested for their performance to extract cobalt from an aqueous chloride phase to an ionic liquid phase. Tri(hexyl)tetradecylphosphonium chloride (Cyphos IL 101) turned out to be the best option as the ionic liquid phase, compromising between commercial availability, separation characteristics and easiness to handle the ionic liquid.
Imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium, and quaternary ammonium bis(trifluoromethylsulfonyl)imide salts were functionalized with a carboxyl group. These ionic liquids are useful for the selective dissolution of metal oxides and hydroxides. Although these hydrophobic ionic liquids are immiscible with water at room temperature, several of them form a single phase with water at elevated temperatures. Phase separation occurs upon cooling. This thermomorphic behavior has been investigated by (1)H NMR, and it was found that it can be attributed to the temperature-dependent hydration and hydrogen-bond formation of the ionic liquid components. The crystal structures of four ionic liquids and five metal complexes have been determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.