Protonated betaine bis(trifluoromethylsulfonyl)imide is an ionic liquid with the ability to dissolve large quantities of metal oxides. This metal-solubilizing power is selective. Soluble are oxides of the trivalent rare earths, uranium(VI) oxide, zinc(II) oxide, cadmium(II) oxide, mercury(II) oxide, nickel(II) oxide, copper(II) oxide, palladium(II) oxide, lead(II) oxide, manganese(II) oxide, and silver(I) oxide. Insoluble or very poorly soluble are iron(III), manganese(IV), and cobalt oxides, as well as aluminum oxide and silicon dioxide. The metals can be stripped from the ionic liquid by treatment of the ionic liquid with an acidic aqueous solution. After transfer of the metal ions to the aqueous phase, the ionic liquid can be recycled for reuse. Betainium bis(trifluoromethylsulfonyl)imide forms one phase with water at high temperatures, whereas phase separation occurs below 55.5 degrees C (temperature switch behavior). The mixtures of the ionic liquid with water also show a pH-dependent phase behavior: two phases occur at low pH, whereas one phase is present under neutral or alkaline conditions. The structures, the energetics, and the charge distribution of the betaine cation and the bis(trifluoromethylsulfonyl)imide anion, as well as the cation-anion pairs, were studied by density functional theory calculations.
We studied the thermal conductivity, thermal effusivity, and specific heat capacity at constant pressure of the critical binary liquid mixture aniline-cyclohexane near the consolute point, using a photopyroelectric (PPE) technique and adiabatic scanning calorimetry (ASC). According to recent theoretical predictions based on renormalization group theory calculations, a substantial (but not diverging) enhancement in the thermal conductivity in the homogeneous phase near the critical temperature was expected for this binary system near the consolute point. However, within an experimental precision of 0.05%, we found no deviation from linear behavior in the range of 5 K above Tc down to Tc. The specific heat capacity calculated from the results for the thermal conductivity and effusivity is in good agreement with that measured by ASC. For the ASC results, the theoretical power law expression with the Ising critical exponent was fitted to the specific heat capacity both above and below the transition temperature. Good agreement with theory was found both for the amplitude ratio and the two-scale universality.
Experimental investigations on binary liquid mixtures near the critical mixing point are presently leading to a controversy about the anomaly in the thermal conductivity. A photopyroelectric technique is used to determine the thermal conductivity and the effusivity of the binary liquid mixture n-butoxyethanol-water at its critical concentration near the critical mixing point. It is proven that, contrary to previous reports, there is no critical enhancement in the thermal conductivity. The specific heat capacity is calculated from these results and compared with the results from measurements performed by adiabatic scanning calorimetry.
Using the photopyroelectric method, we have determined the thermal resistance r and the thermal conductivity k of adhesive tapes, which are consistent with those previously reported for similar samples. Moreover, the method is capable of separating the different components of r that add up in the total resistance introduced by an adhesive tape placed between two surfaces: A component due to the sample material itself, a component in the presence of material inhomogeneities, and a contact resistance due to surface roughness. The first two components are characteristic of the sample material while the latter depends on the adhesive properties of the sample and on the surface state of the support material. In our case, it was equivalent to an air gap in the submicron range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.