We have developed novel watertight and bioabsorbable synthetic dural substitutes. The substitutes were designed such that they had a three-layered structure, and each layer comprised a bioabsorbable copolymer prepared from L-lactide, glycolide, and epsilon-caprolactone. Various copolymers were synthesized, and appropriate compositions were selected for preparing the substitutes based on the results of leakage tests. Experimental substitutes that prevented the leakage of saline through the suture lines between the substitutes and dura mater were prepared. An in vitro study was performed in which the substitutes were sutured to porcine dura mater, and the amount of saline leakage was measured. It was demonstrated that leakage through the suture line could be completely suppressed by using the substitutes we developed along with favorable suturing techniques.
The pathophysiology of secondary brain damage following experimental traumatic brain injury was investigated by measuring local cerebral blood flow (lCBF), local cerebral glucose utilization (lCGU), and activity of succinate dehydrogenase (SDH), which is a mitochondrial enzyme of the tricarboxylic acid cycle, in the rat brain after moderate lateral fluid percussion injury. Measurements used autoradiography for lCBF and lCGU with [14C]iodoantipyrine and [14C]2-deoxyglucose, respectively. Regional SDH activity was determined using quantitative imaging of formazan produced from 2,3,5-triphenyl tetrazolium chloride by SDH. lCBF decreased at 1 hour after injury and was significantly lower than the preinjury level in almost all regions of both hemispheres at 6 and 24 hours, and remained low at 2 weeks. lCGU increased 1 hour after injury but was significantly decreased at 6 and 24 hours, and at 2 weeks in most regions of both hemispheres. The ipsilateral hemisphere showed a significant decrease in the activity of SDH in the cortices, hippocampus, thalamus, and caudate/putamen, most conspicuously 72 hours after injury, whereas no significant decrease was observed in the contralateral hemisphere at any time. Necrosis in the injured cortex and reduction of the number of neurons in the ipsilateral hippocampus were observed 2 weeks after injury. The present study showed that a decrease in lCBF and mitochondrial dysfunction occur with glucose hypermetabolism around 1 hour after lateral fluid percussion injury, and that lCBF, lCGU, and mitochondrial function all deteriorate after 6 hours. This suggests that lCBF and cellular metabolism may change dynamically during the several hours following traumatic brain injury, and afterwards neuronal damage may result in an irreversible change in the areas with depressed glucose hypermetabolism in the early period after injury in combination with mitochondrial dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.