The results of a research project (EU AIR Research Programme CT94-1025) aimed to introduce control of migration into good manufacturing practice and into enforcement work are reported. Representative polymer classes were defined on the basis of chemical structure, technological function, migration behaviour and market share. These classes were characterized by analytical methods. Analytical techniques were investigated for identification of potential migrants. High-temperature gas chromatography was shown to be a powerful method and 1H-magnetic resonance provided a convenient fingerprint of plastic materials. Volatile compounds were characterized by headspace techniques, where it was shown to be essential to differentiate volatile compounds desorbed from those generated during the thermal desorption itself. For metal trace analysis, microwave mineralization followed by atomic absorption was employed. These different techniques were introduced into a systematic testing scheme that is envisaged as being suitable both for industrial control and for enforcement laboratories. Guidelines will be proposed in the second part of this paper.
A collection has been made of additives that are required as analytical standards for enforcement of European Union legislation on food contact plastics. The 100 additives have been characterized by mass spectrometry, infra-red spectroscopy and proton nuclear magnetic resonance spectroscopy to provide reference spectra. Gas chromatographic retention times have been recorded to facilitate identification by retention index. This information has been further supplemented by physico-chemical data. Finally, chromatographic methods have been used to indicate the presence of any impurities in the commercial chemicals. Samples of the reference substances are available on request and the collection of spectra and other information will be made available in printed format and on-line through the Internet. This paper gives an overview of the work done to establish the reference collection and the spectral atlas, which together will assist enforcement laboratories in the characterization of plastics and the selection of analytical methods for additives that may migrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.