The notion of a Z-algebra has a non-linear analogue, whose purpose it is to control operations on commutative rings rather than linear operations on abelian groups. These plethories can also be considered non-linear generalizations of cocommutative bialgebras. We establish a number of categorytheoretic facts about plethories and their actions, including a Tannaka-Kreinstyle reconstruction theorem. We show that the classical ring of Witt vectors, with all its concomitant structure, can be understood in a formula-free way in terms of a plethystic version of an affine blow-up applied to the plethory generated by the Frobenius map. We also discuss the linear and infinitesimal structure of plethories and explain how this gives Bloch's Frobenius operator on the de Rham-Witt complex.
A well-known conjecture asserts that the mapping class group of a surface (possibly with punctures/boundary) does not virtually surject onto Z if the genus of the surface is large. We prove that if this conjecture holds for some genus, then it also holds for all larger genera. We also prove that if there is a counterexample to this conjecture, then there must be a counterexample of a particularly simple form. We prove these results by relating the conjecture to a family of linear representations of the mapping class group that we call the higher Prym representations. They generalize the classical symplectic representation.
In this paper, we show that the domination number $D$ of a random graph enjoys as sharp a concentration as does its chromatic number $\chi$. We first prove this fact for the sequence of graphs $\{G(n,p_n\},\; n\to\infty$, where a two point concentration is obtained with high probability for $p_n=p$ (fixed) or for a sequence $p_n$ that approaches zero sufficiently slowly. We then consider the infinite graph $G({\bf Z}^+, p)$, where $p$ is fixed, and prove a three point concentration for the domination number with probability one. The main results are proved using the second moment method together with the Borel Cantelli lemma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.