We give a concrete description of the category of étale algebras over the ring of Witt vectors of a given finite length with entries in an arbitrary ring. We do this not only for the classical p-typical and big Witt vector functors but also for certain analogues over arbitrary local and global fields. The basic theory of these generalized Witt vectors is developed from the point of view of commuting Frobenius lifts and their universal properties, which is a new approach even for classical Witt vectors. Our larger purpose is to provide the affine foundations for the algebraic geometry of generalized Witt schemes and arithmetic jet spaces, so the basics are developed in some detail, with an eye toward future applications.
The notion of a Z-algebra has a non-linear analogue, whose purpose it is to control operations on commutative rings rather than linear operations on abelian groups. These plethories can also be considered non-linear generalizations of cocommutative bialgebras. We establish a number of categorytheoretic facts about plethories and their actions, including a Tannaka-Kreinstyle reconstruction theorem. We show that the classical ring of Witt vectors, with all its concomitant structure, can be understood in a formula-free way in terms of a plethystic version of an affine blow-up applied to the plethory generated by the Frobenius map. We also discuss the linear and infinitesimal structure of plethories and explain how this gives Bloch's Frobenius operator on the de Rham-Witt complex.
Abstract. This is an account of the algebraic geometry of Witt vectors and arithmetic jet spaces. The usual, "p-typical" Witt vectors of p-adic schemes of finite type are already reasonably well understood. The main point here is to generalize this theory in two ways. We allow not just p-typical Witt vectors but those taken with respect to any set of primes in any ring of integers in any global field, for example. This includes the "big" Witt vectors. We also allow not just p-adic schemes of finite type but arbitrary algebraic spaces over the ring of integers in the global field. We give similar generalizations of Buium's formal arithmetic jet functor, which is dual to the Witt functor. We also give concrete geometric descriptions of Witt spaces and arithmetic jet spaces and investigate whether a number of standard geometric properties are preserved by these functors.
Abstract. We show that any Λ-ring, in the sense of Riemann-Roch theory, which is finiteétale over the rational numbers and has an integral model as a Λ-ring is contained in a product of cyclotomic fields. In fact, we show that the category of them is described in a Galois-theoretic way in terms of the monoid of pro-finite integers under multiplication and the cyclotomic character. We also study the maximality of these integral models and give a more precise, integral version of the result above. These results reveal an interesting relation between Λ-rings and class field theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.