We present a new type of dual-band terahertz metamaterial absorber formed by a patterned metallic strip and a dielectric layer on top of a metallic ground plane. It is found that besides a strong absorption in the fundamental resonance, a prominent high-order resonance with near-unity absorption is also unveiled. The origin of the induced dual-band absorption was elucidated. Importantly, the quality factor (Q) and the figure of merit (FOM) of the high-order resonance are 8.4 and 22.7 times larger than that of the fundamental resonance, respectively, which makes the proposed absorber to have significant potential in biological monitoring and sensing. Moreover, we demonstrate a dual-band and insensitive for two orthogonal polarizations terahertz absorber based on a metallic cross and a metallic ground plane separated by a dielectric layer. The Q and FOM of the high-order resonance are still larger than that of the fundamental resonance. The proposed absorbers appear to be very promising for solar cells, detection, and imaging applications.
Perfect light absorbers have attracted much attention because of their potential applications in solar cells, thermal imaging, material detection, bio-sensing, and others. However, it is extremely difficult to obtain the ultra-narrow bandwidth of a perfect light absorber in the terahertz region. Herein, an ultra-narrow terahertz perfect light absorber based on the surface lattice resonance of three stacking layers, namely a square resonator, a dielectric spacer, and a metallic film, is reported. A resonance absorption peak with bandwidth of 0.0200 THz and absorption rate of 98.86% is realized. The absorption performance of the device can be controlled by employing different sized (unit) periods and dielectric spacer thicknesses.Particularly, the device bandwidth can be decreased by reducing the dielectric layer thickness. At a certain thickness, a resonance peak with a bandwidth of only 0.0067 THz is achieved. This peak is very sensitive to the surrounding refractive index. The large sensitivity (2.58 THz per refractive index) and simultaneous ultra-narrow bandwidth lead to an ultra-high figure of merit (385.07), making this a promising light device in terahertz detection and sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.