Aim Oxytocin plays an important role in social recognition in rodents, which is mediated predominantly by the olfactory system. Although oxytocin modulates neural activity in the olfactory bulb, the underlying mechanism is largely unknown. Here, we studied how direct infusion of oxytocin into the olfactory bulb affect social interactions in mice and modulate the neural activity of mitral/tufted cells in the olfactory bulb. Methods A three‐chamber social interaction test was used in the behavioural test. For in vivo studies, single unit recordings, local field potential recordings and fibre photometry recordings were used to record the neural activity of olfactory bulb. For in vitro studies, we performed patch clamp recordings in the slice of the olfactory bulb. Results Behaviourally, direct oxytocin infusion in olfactory bulb increased performance in a social interaction task. Moreover, odour‐evoked responses of mitral/tufted cells and neural discrimination of odours were both enhanced by oxytocin, whereas the spontaneous firing rate of mitral/tufted cells was reduced. At the neural network level, oxytocin decreased the amplitude of odour‐evoked high gamma responses. At the cell population level, oxytocin decreased odour‐evoked calcium responses (reflecting neural activity) specifically in granule cells. Moreover, in vitro slice recordings revealed that the inhibitory effect of oxytocin on mitral cell activity is mediated mainly by modulation of ATP‐sensitive potassium channels and involves the oxytocin receptor–Gq–PLC–IP3 signalling pathway. Conclusion Oxytocin modulates social interaction, likely by increasing the signal‐to‐noise ratio of odour responses in mitral cells which is partly through ATP‐sensitive potassium channel.
With the ratification of the Paris Agreement at the Paris Climate Conference, reducing carbon emissions has become a global interest. Coal is one of the main industries causing carbon emissions; thus, quantifying carbon emissions from coal mining is an important step in reducing these emissions. Firstly, based on the life cycle idea, in this paper, we define the Carbon Emission Boundary of the fully mechanized coal mining method. Secondly, the carbon emission accounting model (B-R model) of fully mechanized coal mining is established, which includes the total amount of carbon emissions and the carbon emissions of each mining link during the mining process. The Fifth-II mining area of the Jinda Coal Mine in Tengzhou City is taken as an example. We collect the relevant data on carbon emissions in the mining process of the Jinda Coal Mine, and the B-R model is used to obtain the carbon emissions in the mining process of this mining area. Finally, the feasibility of the B-R model is further verified according to the international authoritative carbon emission IPCC calculation method and the China Coal Production Enterprises Greenhouse Gas Emissions Accounting Methodology and Reporting Guide. The results show that the B-R model in this paper is feasible and that the greatest amount of carbon emissions arises from the coal breaking link and coal transportation, which provides a basis for other coal mines to calculate carbon emissions. The B-R model lays a foundation for coal mines to formulate a carbon emission reduction system.
Hearing ability of mammals can be impacted by many factors including social cues, environment, and physical properties of animal morphology. Despite being used commonly to study social behaviors, the hearing ability of the monogamous prairie vole (Microtus ochrogaster) has never been fully characterized. In this study, we measure morphological head and pinna features and use auditory brainstem responses to measure hearing ability of prairie voles characterizing monaural and binaural hearing and hearing range. Additionally, we measured unbonded male and female voles to characterize differences due to sex. We found that prairie voles have intermediate hearing ability with an optimal hearing range of 8 to 32 kHz, robust binaural hearing ability, and characteristic monaural ABRs. We show no differences between the sexes for binaural hearing or hearing range, however female voles have increased amplitude of peripheral ABR waves I and II and increased latency of wave IV. Our results confirm that prairie voles have both low and high frequency hearing, binaural hearing capability, and despite biparental care and monogamy, differences in processing of sound information between the sexes. These data further highlight the necessity to understand sex-specific differences in neural processing that may underly variability in behavioral responses between sexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.