Predictions of the solubility of flavonoids in a large variety of ionic liquids (ILs) with over 1800 available structures were examined based on COSMO-RS computation. The results show that the solubilities of flavonoids are strongly anion-dependent. Experimental measurement of the solubilities of esculin and rutin in 12 ILs with varying anions and cations show that predicted and experimental results generally have a good agreement. Based on the sound physical basis of COSMO-RS, the solubility changes of flavonoids were quantitatively associated with solvation interactions and structural characteristics of ILs. COSMO-RS derived parameters, i.e. misfit, H-bonding and van der Waals interaction energy, are shown to be capable of characterizing the complicated multiple interactions in the IL system effectively. H-bonding interaction is the most dominant interaction for ILs (followed by misfit and van der Waals interactions) to determine the solubility of flavonoids, and the anionic part has greater effect on the overall H-bonding capability of the IL. Based on basicity of anions, ILs were categorized into 3 groups, corresponding to the classification of the solubility of flavonoid. COSMO sigma-moment descriptors, which roughly denote the characteristic properties of the ILs, might be of general value to have a fast estimation for the solubilities of flavonoids as well as those compounds with massive moieties as H-bonding donors. The results obtained in this work may be important for achieving an improved understanding of IL solvations and the tailoring of the desired structures of ILs used as the media for efficient enzymatic esterification of flavonoids.
• C were optimal for the reaction system. The activation energy (E a ) of the esterification reaction was calculated as 43.6 kJ mol −1 . The optimal ratio of CA to OA was 1.0:6.0, with the absence of any inhibition by OA. Using the optimized conditions, the maximum enzymatic activity was 390.3 nmol g −1 min −1 , with a bioconversion yield of 100% after 12 days of reaction. In addition, the electrospray ionization-mass spectroscopy analysis confirmed that the major end product of the esterification reaction was oleyl cinnamate.
Investigations into expanded uses of modified flavonoids are often limited by the availability of these high purity compounds. As such, a simple, effective and relatively fast method for isolation of gram quantities of both long and medium chain fatty acid esters of rutin following scaled-up biosynthesis reactions was established. Acylation reactions of rutin and palmitic or lauric acids were efficient in systems containing dried acetone and molecular sieves, yielding from 70-77% bioconversion after 96 h. Thereafter, high purity isolates ([97%) were easily obtained in significant quantities following a two-step solvent purification procedure whereby excess fatty acid substrate was first removed in a heptane/water (4:1, v/v) system, followed by selective ester extraction using an ethyl acetate/water system (1:6, v/v) at elevated temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.