<p><span>Tifinagh handwritten character recognition has been a challenging problem due to the similarity and variability of its alphabets. This paper proposes an optimized convolutional neural network (CNN) architecture for handwritten character recognition. The suggested model of CNN has a multi-layer feed-forward neural network that gets features and properties directly from the input data images. It is based on the newest deep learning open-source Keras Python library. The novelty of the model is to optimize the optical character recognition (OCR) system in order to obtain best performance results in terms of accuracy and execution time. The new optical character recognition system is tested on a customized dataset generated from the amazigh handwritten character database. Experimental results show a good accuracy of the system (99.27%) with an optimal execution time of the classification compared to the previous works.</span></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.