Nowadays, the reuse of waste is a challenge that every country in the world is facing in order to preserve the planet and introduce a circular economy. The chemical composition of some steel waste suggests that there are potentially appropriate substances for reuse, since this type of slag undergoes a process similar to that of cement in its manufacture. The advantages for the environment are obvious, as it valorises waste that is deposited in landfills. This paper studies the field of stainless steel, because its composition is different from that of carbon steel, and the replacement of cement with material or waste produced in the manufacture of stainless steel in a concrete matrix. This paper presents the results of replacing 25% of cement with material or waste produced in the manufacture of stainless steel in a concrete matrix whose values in the substitutions carried out were around 21% and 25% in terms of increased resistance capacity. These results have been obtained by carrying out tests, in terms of both strength and environmental capacity, allowing us to determine viable applications for the use of steel waste to improve the performance of cement or at least match it.
In the area of civil engineering and especially hydraulic structures, we find multiple anomalies that weakens mechanical characteristics of dikes, one of the most common anomalies is erosion phenomenon specifically pipe flow erosion which causes major damage to dam structures. This phenomenon is caused by a hole which is the result of the high pressure of water that facilitate the soil migration between the two sides of the dam. It becomes only a question of time until the diameter of the hole expands and causes destruction of the dam structure. This problem pushed physicist to perform many tests to quantify erosion kinetics, one of the most used tests to have logical and trusted results is the HET (hole erosion test). Meanwhile there is not much research regarding the models that govern these types of tests. Objectives: In this paper we modeled the HET using modeling software based on the Navier Stokes equations, this model tackles also the singularity of the interface structure/water using wall laws for a flow turbulence. Methods/Analysis: The studied soil in this paper is a clay soil, clay soil has the property of containing water more than most other soils. Three wall laws were applied on the soil / water interface to calculate the erosion rate in order to avoid the rupture of such a structure. The modlisitation was made on the ANSYS software. Findings: In this work, two-dimensional modeling was carried of the soil.in contrast of the early models which is one-dimensional model, the first one had shown that the wall-shear stress which is not uniform along the whole wall. Then using the linear erosion law to predict the non-uniform erosion along the whole length. The previous study found that the wall laws have a significant impact on the wall-shear stress, which affects the erosion interface in the fluid/soil, particularly at the hole's extremes. Our experiment revealed that the degraded profile is not uniform. Doi: 10.28991/cej-2021-03091742 Full Text: PDF
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.