The finite element (FEM) and the boundary element methods (BEM) are well known powerful numerical techniques for solving a wide range of problems in applied science and engineering. Each method has its own advantages and disadvantages, so that it is desirable to develop a combined finite element/boundary element method approach, which makes use of their advantages and reduces their disadvantages. Several coupling techniques are proposed in the literature, but until now the incompatibility of the basic variables remains a problem to be solved. To overcome this problem, a special super-element using boundary elements based on the usual finite element technique of total potential energy minimization has been developed in this paper. The application of the most commonly used approaches in finite element method namely quarterpoint elements and J-integrals techniques were examined using the proposed coupling FEM-BEM. The accuracy and efficiency of the proposed approach have been assessed for the evaluation of stress intensity factors (SIF). It was found that the FEM-BEM coupling technique gives more accurate values of the stress intensity factors with fewer degrees of freedom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.