The finite element (FEM) and the boundary element methods (BEM) are well known powerful numerical techniques for solving a wide range of problems in applied science and engineering. Each method has its own advantages and disadvantages, so that it is desirable to develop a combined finite element/boundary element method approach, which makes use of their advantages and reduces their disadvantages. Several coupling techniques are proposed in the literature, but until now the incompatibility of the basic variables remains a problem to be solved. To overcome this problem, a special super-element using boundary elements based on the usual finite element technique of total potential energy minimization has been developed in this paper. The application of the most commonly used approaches in finite element method namely quarterpoint elements and J-integrals techniques were examined using the proposed coupling FEM-BEM. The accuracy and efficiency of the proposed approach have been assessed for the evaluation of stress intensity factors (SIF). It was found that the FEM-BEM coupling technique gives more accurate values of the stress intensity factors with fewer degrees of freedom.
The effect of adverse weather conditions on the safety of vehicles moving on different types of roads and measuring its margin of safety have always been a major research issue of highways. Determining the exact value of friction coefficient between the wheels of the vehicle and the surface of the pavement (usually Asphalt Concrete) in different weather conditions is assumed as a major factor in design process. An appropriate method is analyzing the dynamic motion of the vehicle and its interactions with geometrical elements of road using dynamic simulation of vehicles. In this paper the effect of changes of friction coefficient caused by the weather conditions on the dynamic responses of three types of vehicles: including Sedan, Bus, and Truck based on the results of Adams/car Simulator are investigated. The studies conducted on this issue for different weather conditions suggest values ranging from 0.04 to 1.25. The results obtained from simulation based on Adams/car represent that the friction coefficient in values of 0.9, 0.8, 0.7, 0.6 do not effect on braking distance significantly and it is possible to attribute them all to dry weather condition. However, as it was anticipated the values of 0.5, 0.4, 0.28 and 0.18 have significant differences in braking distance. Hence, the values of 0.5, 0.4, 0.28 and 0.18 can be attributed to wet, rainy, snowy and icy conditions respectively.
Road transportation poses one of the significant public health risks. Several contributors and factors strongly link public health and road safety. The design and advancement of higher-quality roads can significantly contribute to safer roads and save lives. In this article, the safety aspect of the roads’ horizontal curves under the standard of the American Association of State Highway Transportation Officials (AASHTO) is evaluated. Several factors, including vehicle weight, vehicle dimensions, longitudinal grades, and vehicle speed in the geometric design of the horizontal curves, are investigated through a multi-body dynamic simulation process. According to the AASHTO, a combination of simple circular and clothoid transition curves with various longitudinal upgrades and downgrades was designed. Three vehicles were used in this simulation, including a sedan, a bus, and a 3-axle truck. The analysis was based on the lateral friction between the tire and the pavement and also the safety margin parameter. The results showed that designers must differentiate between light and heavy vehicles, especially in curves with a high radius. Evaluation of longitudinal grade impacts indicated that the safety margin decreases when the vehicle is entering the curve. Safety margin reduction on the clothoid curve takes place with a lower grade toward the simple circular curve. By increasing the speed, the difference between lateral friction demand obtained from simulation and lateral friction demand proposed by AASHTO grows. The proposed novel methodology can be used for evaluating road safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.