In order to clarify the nature of the halogen bond (XB), we considered the prototype noble gas–dihalogen molecule (Ng–X2) systems, focusing on the nature, range, and strength of the interaction. We exploited data gained from molecular beam scattering experiments with the measure of interference effects to obtain a suitable formulation of the interaction potential, with the support of high-level ab initio calculations, and charge displacement analysis. The essential interaction components involved in the Ng–X2 adducts were characterized, pointing at their critical balance in the definition of the XB. Particular emphasis is devoted to the energy stability of the orientational Ng–X2 isomers, the barrier for the X2 hindered rotation, and the influence of the X2 electronic state. The present integrated study returns reliable force fields for molecular dynamic simulations in Ng–X2 complexes that can be extended to systems with increasing complexity and whose properties depend on the selective formation of XB.
Valorisation of phenols into high value-added products via step- and atom-efficient protocols is of great importance for the transition to sustainable chemical production. Among the transformation of phenols, C–H functionalization...
In order to clarify the nature of the halogen bond (XB), we considered the prototype noble gas – dihalogen molecule (Ng-X2) systems, focusing on the nature, range and strength of the interaction. We exploited data gained from molecular beam scattering experiments with the measure of interference effects to obtain a suitable formulation of the interaction potential, with the support of high-level ab initio calculations, and charge displacement analysis. The essential interaction components involved in the Ng-X2 adducts have been characterized, pointing at their critical balance in the definition of the XB. Particular emphasis is devoted to the energy stability of the orientational Ng-X2 isomers, the barrier for the X2 hindered rotation, and the influence of the X2 electronic state. The present integrated study returns reliable force fields for molecular dynamics simulations in Ng-X2 complexes that can be extended to systems with increasing complexity and whose properties depend on the selective formation of XB.
Correction for ‘Valorisation of phenols to coumarins through one-pot palladium-catalysed double C–H functionalizations’ by Giulia Brufani et al., Green Chem., 2022, https://doi.org/10.1039/d2gc03579k.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.