Irradiation of 4-chloroaniline or of its N,N-dimethyl derivative in polar solvents generates the corresponding triplet phenyl cations. These are trapped by alkenes yielding arylated products in medium to good yields. B3LYP calculations show that the triplet cation slides with negligible activation energy to a bonded adduct with ethylene, whereas it forms only a marginally stabilized CT complex with water (chosen as a representative sigma nucleophile). The structure of the final products depends on the preferred path from the adduct cation with the alkene. In the case of aryl olefins, this deprotonates to stilbene derivatives, while, from 2,3-dimethyl-2-butene and allytrimethylsilane, allylanilines are obtained by elimination of an electrofugal group in gamma. In the case of mono- and disubstituted alkenes the cation adds chloride rather than eliminating and beta-chloroalkylanilines are obtained. The regio- and sterochemistry of the addition across the alkene are best understood with a phenonium ion structure for the adduct. The nucleophile entering in beta can be varied under conditions in which the adduct cation is trapped more efficiently than the starting phenyl cation. Thus, beta-methoxyalkylanilines are formed when the irradiation is carried out in methanol. beta-Iodoalkylanilines are obtained in acetonitrile containing iodide and unsubstituted alkylanilines in the presence of sodium borohydride. A case of intramolecular nucleophilic trapping is found with 4-pentenoic acid. The reaction is a wide-scope ionic analogue of the radicalic Meerwin arylation of olefins.
4-Chloroaniline and its N,N-dimethyl derivative are photostable in cyclohexane but undergo efficient photoheterolysis in polar media via the triplet state and give the corresponding triplet phenyl cations. CASSCF and UB3LYP calculations show that the 4-aminophenyl triplet cation has a planar geometry and is stabilized by >10 kcal mol(-1) with respect to the slightly bent singlet. The triplet has a mixed carbene-diradical character at the divalent carbon. This species either adds to the starting substrate forming 5-chloro-2,4'-diaminodiphenyls (via an intermediate cyclohexadienyl cation) or is reduced to the aniline (via the aniline radical cation) in a ratio depending on the hydrogen-donating properties of the solvent. Transients attributable to the triplet aminophenyl cation as well as to the ensuing intermediates are detected. Chemical evidence for the generation of the phenyl cation is given by trapping via electrophilic substitution with benzene, mesitylene, and hexamethylbenzene (in the last case the main product is a 6-aryl-3-methylene-1,4-cyclohexadiene). Relative rates of electrophilic attack to benzene and to some alkenes and five-membered heterocycles are measured and span over a factor of 15 or 30 for the two cations. The triplet cation formed under these conditions is trapped by iodide more efficiently than by the best pi nucleophiles. However, in contrast to the singlet cation, it does not form ethers with alcohols, by which it is rather reduced.
beta-Aminoalkylanilines are smoothly obtained by irradiation of 4-chloro- and 4-fluoroanilines (as well as the N,N-dimethyl derivatives) in the presence of alkenes (1-hexene, cyclohexene) and amines (butylamine, piperidine) in polar, protic solvents such as trifluoroethanol (yield 40-75%). The reaction involves photoheterolysis of the haloaniline, addition of the resulting phenyl cation to the alkene and trapping of the phenonium cation by amine. A fraction (up to ca. 20%) of aminoalkylanilines resulting from Wagner-Meerwein rearrangement of the phenonium cation is obtained in some cases. Reduction and direct trapping of the phenyl cation by the amine compete with the above three-component synthesis in a less stabilizing solvent such as acetonitrile, but not in CF(3)CH(2)OH.
A general steroid synthesis is presented that relies on prior formation of three stereogenic centers (C8, C13, and C14) on a D ring template, followed by C- and B-ring cyclizations. The assembly of the key D ring template, achieved by a 3-component conjugate addition/alkylation process, allows introduction of structural variety as required. The method is illustrated by the total synthesis of estrone via a C-ring closing metathesis and a B-ring Heck cyclization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.