Hepatic tissue engineering using decellularized scaffolds is a potential therapeutic alternative to conventional transplantation. However, scaffolds are usually obtained using decellularization protocols that destroy the extracellular matrix (ECM) and hamper clinical translation. We aim to develop a decellularization technique that reliably maintains hepatic microarchitecture and ECM components. Isolated rat livers were decellularized by detergent-enzymatic technique with (EDTA-DET) or without EDTA (DET). Histology, DNA quantification and proteomics confirmed decellularization with further DNA reduction with the addition of EDTA. Quantification, histology, immunostaining, and proteomics demonstrated preservation of extracellular matrix components in both scaffolds with a higher amount of collagen and glycosaminoglycans in the EDTA-DET scaffold. Scanning electron microscopy and X-ray phase contrast imaging showed microarchitecture preservation, with EDTA-DET scaffolds more tightly packed. DET scaffold seeding with a hepatocellular cell line demonstrated complete repopulation in 14 days, with cells proliferating at that time. Decellularization using DET preserves microarchitecture and extracellular matrix components whilst allowing for cell growth for up to 14 days. Addition of EDTA creates a denser, more compact matrix. Transplantation of the scaffolds and scaling up of the methodology are the next steps for successful hepatic tissue engineering.
An altered liver microenvironment characterized by a dysregulated extracellular matrix (ECM) supports the development and progression of hepatocellular carcinoma (HCC). The development of experimental platforms able to reproduce these physio-pathological conditions is essential in order to identify and validate new therapeutic targets for HCC. The aim of this work was to validate a new in vitro model based on engineering three-dimensional (3D) healthy and cirrhotic human liver scaffolds with HCC cells recreating the micro-environmental features favoring HCC. Healthy and cirrhotic human livers ECM scaffolds were developed using a high shear stress oscillation-decellularization procedure. The scaffolds bio-physical/bio-chemical properties were analyzed by qualitative and quantitative approaches. Cirrhotic 3D scaffolds were characterized by biomechanical properties and microarchitecture typical of the native cirrhotic tissue. Proteomic analysis was employed on decellularized 3D scaffolds and showed specific enriched proteins in cirrhotic ECM in comparison to healthy ECM proteins. Cell repopulation of cirrhotic scaffolds highlighted a unique up-regulation in genes related to epithelial to mesenchymal transition (EMT) and TGFβ signaling. This was also supported by the presence and release of higher concentration of endogenous TGFβ1 in cirrhotic scaffolds in comparison to healthy scaffolds. Fibronectin secretion was significantly upregulated in cells grown in cirrhotic scaffolds in comparison to cells engrafted in healthy scaffolds. TGFβ1 induced the phosphorylation of canonical proteins Smad2/3, which was ECM scaffold-dependent. Important, TGFβ1-induced phosphorylation of Smad2/3 was significantly reduced and ECM scaffold-independent when pre/simultaneously treated with the TGFβ-R1 kinase inhibitor Galunisertib. In conclusion, the inherent features of cirrhotic human liver ECM micro-environment were dissected and characterized for the first time as key pro-carcinogenic components in HCC development.
The regulation of protein turnover by the ubiquitin proteasome system (UPS) is a major posttranslational mechanism in eukaryotes. One of the key components of the UPS, the COP9 signalosome (CSN), regulates 'cullin-ring' E3 ubiquitin ligases. In plants, CSN participates in diverse cellular and developmental processes, ranging from light signaling to cell cycle control. In this work, we isolated a new plant-specific CSN-interacting F-box protein, which we denominated CFK1 (COP9 INTERACTING F-BOX KELCH 1). We show that, in Arabidopsis thaliana, CFK1 is a component of a functional ubiquitin ligase complex. We also show that CFK1 stability is regulated by CSN and by proteasome-dependent proteolysis, and that light induces accumulation of the CFK1 transcript in the hypocotyl. Analysis of CFK1 knockdown, mutant, and overexpressing seedlings indicates that CFK1 promotes hypocotyl elongation by increasing cell size. Reduction of CSN levels enhances the short hypocotyl phenotype of CFK1-depleted seedlings, while complete loss of CSN activity suppresses the long-hypocotyl phenotype of CFK1-overexpressing seedlings. We propose that CFK1 (and its regulation by CSN) is a novel component of the cellular mechanisms controlling hypocotyl elongation.
In the human pathogen Staphylococcus aureus, there exists an enormous diversity of proteins containing DUFs (domains of unknown function). In the present study, we characterized the family of conserved staphylococcal antigens (Csa) classified as DUF576 and taxonomically restricted to Staphylococci. The 18 Csa paralogues in S. aureus Newman are highly similar at the sequence level, yet were found to be expressed in multiple cellular locations. Extracellular Csa1A was shown to be post-translationally processed and released. Molecular interaction studies revealed that Csa1A interacts with other Csa paralogues, suggesting that these proteins are involved in the same cellular process. The structures of Csa1A and Csa1B were determined by X-ray crystallography, unveiling a peculiar structure with limited structural similarity to other known proteins. Our results provide the first detailed biological characterization of this family and confirm the uniqueness of this family also at the structural level. We also provide evidence that Csa family members elicit protective immunity in in vivo animal models of staphylococcal infections, indicating a possible important role for these proteins in S. aureus biology and pathogenesis. These findings identify the Csa family as new potential vaccine candidates, and underline the importance of mining the bacterial unknown proteome to identify new targets for preventive vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.