The complex physiological dynamics of neonatal seizures make their detection challenging. A timely diagnosis and treatment, especially in intensive care units, are essential for a better prognosis and the mitigation of possible adverse effects on the newborn’s neurodevelopment. In the literature, several electroencephalographic (EEG) studies have been proposed for a parametric characterization of seizures or their detection by artificial intelligence techniques. At the same time, other sources than EEG, such as electrocardiography, have been investigated to evaluate the possible impact of neonatal seizures on the cardio-regulatory system. Heart rate variability (HRV) analysis is attracting great interest as a valuable tool in newborns applications, especially where EEG technologies are not easily available. This study investigated whether multiscale HRV entropy indexes could detect abnormal heart rate dynamics in newborns with seizures, especially during ictal events. Furthermore, entropy measures were analyzed to discriminate between newborns with seizures and seizure-free ones. A cohort of 52 patients (33 with seizures) from the Helsinki University Hospital public dataset has been evaluated. Multiscale sample and fuzzy entropy showed significant differences between the two groups (p-value < 0.05, Bonferroni multiple-comparison post hoc correction). Moreover, interictal activity showed significant differences between seizure and seizure-free patients (Mann-Whitney Test: p-value < 0.05). Therefore, our findings suggest that HRV multiscale entropy analysis could be a valuable pre-screening tool for the timely detection of seizure events in newborns.
In Neonatal Intensive Care Units (NICUs), the early detection of neonatal seizures is of utmost importance for a timely, effective and efficient clinical intervention. The continuous video electroencephalogram (v-EEG) is the gold standard for monitoring neonatal seizures, but it requires specialized equipment and expert staff available 24/24h. The purpose of this study is to present an overview of the main Neonatal Seizure Detection (NSD) systems developed during the last ten years that implement Artificial Intelligence techniques to detect and report the temporal occurrence of neonatal seizures. Expert systems based on the analysis of EEG, ECG and video recordings are investigated, and their usefulness as support tools for the medical staff in detecting and diagnosing neonatal seizures in NICUs is evaluated. EEGbased NSD systems show better performance than systems based on other signals. Recently ECG analysis, particularly the related HRV analysis, seems to be a promising marker of brain damage. Moreover, video analysis could be helpful to identify inconspicuous but pathological movements. This study highlights possible future developments of the NSD systems: a multimodal approach that exploits and combines the results of the EEG, ECG and video approaches and a system able to automatically characterize etiologies might provide additional support to clinicians in seizures diagnosis.
In Neonatal Intensive Care Units (NICUs), the early detection of neonatal seizures is of utmost importance for a timely clinical intervention. Over the years, several neonatal seizure detection systems were proposed to detect neonatal seizures automatically and speed up seizure diagnosis, most based on the EEG signal analysis. Recently, research has focused on other possible seizure markers, such as electrocardiography (ECG). This work proposes an ECG-based NSD system to investigate the usefulness of heart rate variability (HRV) analysis to detect neonatal seizures in the NICUs. HRV analysis is performed considering time-domain, frequency-domain, entropy and multiscale entropy features. The performance is evaluated on a dataset of ECG signals from 51 full-term babies, 29 seizure-free. The proposed system gives results comparable to those reported in the literature: Area Under the Receiver Operating Characteristic Curve = 62%, Sensitivity = 47%, Specificity = 67%. Moreover, the system’s performance is evaluated in a real clinical environment, inevitably affected by several artefacts. To the best of our knowledge, our study proposes for the first time a multi-feature ECG-based NSD system that also offers a comparative analysis between babies suffering from seizures and seizure-free ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.