Topography and bathymetry are principally supported by some combination of crustal and sub‐crustal density variations. However, dynamic topography is generated by vertical deflection of the Earth's surface as a result of mantle convection. Isolating and quantifying observable dynamic topography yields valuable information about mantle processes. Here, we investigate global dynamic topography by calculating residual depth anomalies throughout the oceanic realm and residual topographic anomalies across the continents. We correct for sedimentary and crustal loading by exploiting a variety of seismologic datasets that include seismic reflection profiles, wide‐angle/refraction surveys, and receiver functions. In this way, an extensively revised and augmented global compilation of 10,874 oceanic residual depth measurements and 3,777 continental residual topographic measurements is constructed. In the oceanic realm, the methodology has been revised to improve accuracy and resolution. First, quartz/clay content of the sedimentary column is adjusted to remove minor skewness of residual depth anomalies as a function of plate age. Secondly, variation of bulk density as a function of crustal thickness is taken into account. Our global compilation is used to generate spherical harmonic representations of observable dynamic topography out to degree 40 (i.e., ∼1,000 km). Resultant spectra demonstrate that dynamic topographic power varies linearly with inverse wavenumber. The spectral slope directly reflects the way by which dynamic topography is generated by Stokes' flow. Our global results are consistent with independent and diverse geologic markers of uplift and subsidence together with Neogene‐Quaternary intraplate basalt magmatism.
The origin of Iberia's topography is examined by combining gravity, magmatic, topographic, and seismological observations with geomorphic considerations. We have four principal results. First, the highest coherence between free-air gravity and topography is at wavelengths ≲250 km where admittance indicates that elastic thickness of Iberia's plate is 20 ± 3 km. These results imply that flexural and subplate support of Iberian topography could be expressed at wavelengths of O(100) km. Second, P-to-S receiver functions and simple isostatic calculations indicate that while crustal thickness variations and flexural loading (e.g., as a result of plate shortening) partially explain the elevation of Pyrenean, Betics, Cantabrian, Spanish Central System, and Iberian Chain topography, they fail to explain the elevation of large parts of Iberia. Third, a new full waveform shear wave tomographic model and velocity to temperature conversions suggest that the asthenosphere beneath Iberia is anomalously slow and has excess temperatures of up to 162 ± 14 • C. Simple isostatic calculations indicate asthenospheric support of topography of up to 1 km. Neogene-Recent (∼23-0 Ma) extrusive magmatism (e.g., Calatrava, Catalan) sit atop many of the slow shear wave velocity anomalies. Finally, biostratigraphic data, combined with inversion of 3,217 river profiles, show that most of Iberia's topography grew during the last ∼30 Ma at rates of up to 0.3 mm/year. Best-fitting theoretical rivers have a low residual root-mean-square misfit (= 0.96) and calculated uplift is consistent with an independent inventory of stratigraphic and biostratigraphic observations. We suggest that Neogene-Recent growth of most of central Iberia's topography was a result of asthenospheric support.
<p>There is considerable interest in combining a range of geophysical, geochemical and geomorphic observations with a view to estimating the amplitude, wavelength and depth of mantle thermal anomalies on a global bases. Here, we wish to explore how forward and inverse modelling of major, trace and rare earth elements can be exploited to determine melt fraction as a function of depth for a mantle peridotitic source. Our focus is on an area that includes the Iberian Peninsula where previous work shows that long-wavelength topography is probably generated and maintained by sub-plate thermal anomalies which are manifest by negative shear-wave velocities. Geological and geomorphic studies suggest that this dynamic support is a Neogene phenomenon. 48 newly acquired Neogene basaltic samples from Spain were analyzed and combined with previously published datasets. Both major element thermobarometry and rare earth element inverse modelling are applied to estimate melt fraction as a function of depth. In this way, asthenospheric potential temperature and lithospheric thickness can be gauged. These estimates are compared with those obtained from calibrated shear-wave tomographic models. Our results show that potential temperatures and lithospheric thicknesses are 1250-1300 &#176;C and 65-70 km, respectively. These values broadly agree with calibrated tomographic models which yield values of 1300-1350 &#176;C and 45-70 km. We conclude that a region encompassing Iberia is dynamically supported by a combination of warm asthenosphere and thinned lithosphere. This conclusion broadly agrees with independently obtained residual depth anomalies which indicate that the Western Mediterranean region probably has moderately positive dynamic support.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.