Modern microscopes used for biological imaging often present themselves as black boxes whose precise operating principle remains unknown, and whose optical resolution and price seem to be in inverse proportion to each other. With UC2 (You. See. Too.) we present a low-cost, 3D-printed, open-source, modular microscopy toolbox and demonstrate its versatility by realizing a complete microscope development cycle from concept to experimental phase. The self-contained incubator-enclosed brightfield microscope monitors monocyte to macrophage cell differentiation for seven days at cellular resolution level (e.g. 2 μm). Furthermore, by including very few additional components, the geometry is transferred into a 400 Euro light sheet fluorescence microscope for volumetric observations of a transgenic Zebrafish expressing green fluorescent protein (GFP). With this, we aim to establish an open standard in optics to facilitate interfacing with various complementary platforms. By making the content and comprehensive documentation publicly available, the systems presented here lend themselves to easy and straightforward replications, modifications, and extensions.
High optical resolution in microscopy usually goes along with costly hardware components, such as lenses, mechanical setups and cameras. Several studies proved that Single Molecular Localization Microscopy can be made affordable, relying on off-the-shelf optical components and industry grade CMOS cameras. Recent technological advantages have yielded consumer-grade camera devices with surprisingly good performance. The camera sensors of smartphones have benefited of this development. Combined with computing power smartphones provide a fantastic opportunity for “imaging on a budget”. Here we show that a consumer cellphone is capable of optical super-resolution imaging by (direct) Stochastic Optical Reconstruction Microscopy (dSTORM), achieving optical resolution better than 80 nm. In addition to the use of standard reconstruction algorithms, we used a trained image-to-image generative adversarial network (GAN) to reconstruct video sequences under conditions where traditional algorithms provide sub-optimal localization performance directly on the smartphone. We believe that “cellSTORM” paves the way to make super-resolution microscopy not only affordable but available due to the ubiquity of cellphone cameras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.