High optical resolution in microscopy usually goes along with costly hardware components, such as lenses, mechanical setups and cameras. Several studies proved that Single Molecular Localization Microscopy can be made affordable, relying on off-the-shelf optical components and industry grade CMOS cameras. Recent technological advantages have yielded consumer-grade camera devices with surprisingly good performance. The camera sensors of smartphones have benefited of this development. Combined with computing power smartphones provide a fantastic opportunity for “imaging on a budget”. Here we show that a consumer cellphone is capable of optical super-resolution imaging by (direct) Stochastic Optical Reconstruction Microscopy (dSTORM), achieving optical resolution better than 80 nm. In addition to the use of standard reconstruction algorithms, we used a trained image-to-image generative adversarial network (GAN) to reconstruct video sequences under conditions where traditional algorithms provide sub-optimal localization performance directly on the smartphone. We believe that “cellSTORM” paves the way to make super-resolution microscopy not only affordable but available due to the ubiquity of cellphone cameras.
Incoherent imaging via an unmodified full pupil seemingly yields the maximum achievable signal-to-noise ratio (SNR) with respect to a fixed photon budget. Such photon-limited SNR is critical in many imaging scenarios, for example, in the case of fluorescence microscopy. In this work, we propose a general method that achieves a better SNR for transmitting high spatial frequency information through an optical imaging system, without the need to capture more photons. This is achieved by splitting the pupil of an incoherent imaging system such that two sub-images are simultaneously acquired and computationally recombined. We compared the theoretical performance of split pupil imaging to the non-split scenario and implement the splitting using a tilted elliptical mirror covering ≈50% of the pupil, placed at the back-focal-plane (BFP) of a fluorescence widefield microscope. Additionally, the proposed system exhibits an extended-depth-of-field (EDoF), utilized further to assign some of the measured (in-focus) signal to different axial planes of the reconstructed sample, through thick slice deconvolution. Our proposed method can be modified to tailor SNR enhancements to specific metrology tasks or to exploit other properties (e.g., spectral or polarization information) for SNR enhancement with impact on future imaging schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.