Fourier ring correlation (FRC) has recently gained popularity among fluorescence microscopists as a straightforward and objective method to measure the effective image resolution. While the knowledge of the numeric resolution value is helpful in e.g., interpreting imaging results, much more practical use can be made of FRC analysis—in this article we propose blind image restoration methods enabled by it. We apply FRC to perform image de-noising by frequency domain filtering. We propose novel blind linear and non-linear image deconvolution methods that use FRC to estimate the effective point-spread-function, directly from the images. We show how FRC can be used as a powerful metric to observe the progress of iterative deconvolution. We also address two important limitations in FRC that may be of more general interest: how to make FRC work with single images (within certain practical limits) and with three-dimensional images with highly anisotropic resolution.
Measurement of changes of pH at various intracellular compartments has potential to solve questions concerning the processing of endocytosed material, regulation of the acidification process, and also acidification of vesicles destined for exocytosis. To monitor these events, the nanosized optical pH probes need to provide ratiometric signals in the optically transparent biological window, target to all relevant intracellular compartments, and to facilitate imaging at subcellular resolution without interference from the biological matrix. To meet these criteria we sensitize the surface conjugated pH sensitive indicator via an upconversion process utilizing an energy transfer from the nanoparticle to the indicator. Live cells were imaged with a scanning confocal microscope equipped with a low-energy 980 nm laser excitation, which facilitated high resolution and penetration depth into the specimen, and low phototoxicity needed for long-term imaging. Our upconversion nanoparticle resonance energy transfer based sensor with polyethylenimine-coating provides high colloidal stability, enhanced cellular uptake, and distribution across cellular compartments. This distribution was modulated with membrane integrity perturbing treatment that resulted into total loss of lysosomal compartments and a dramatic pH shift of endosomal compartments. These nanoprobes are well suited for detection of pH changes in in vitro models with high biological background fluorescence and in in vivo applications, e.g., for the bioimaging of small animal models.
Excitonic absorption was observed in a transmittance spectrum of AlGaN/GaN/AlGaN single quantum well structure with a well width of 5 nm at room temperature. The total internal electric field strength in the well was about 0.73 MV/cm, which was estimated from the absorption peak position based on a simple calculation, neglecting excitons. The observation is clearly due to the quantum-confined Stark effect. While excitonic absorption was clearly observed even in such a high internal field, no light emission was detected under a He-Cd laser excitation at temperatures ranging from room temperature to
T = 10 K. Light emission accompanied by a blue shift of the emission peak and an increase of emission intensity was observed under higher excitation power density. The obvious conclusion in the present case is that the presence of a high internal electric field in the well is a disadvantage for light emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.