This work addresses the task of risk evaluation in traffic scenarios with limited observability due to restricted sensorial coverage. Here, we concentrate on intersection scenarios that are difficult to access visually. To identify the area of sight, we employ ray casting on a local dynamic map providing geometrical information and road infrastructure. Based on the area with reduced visibility, we first model scene entities that pose a potential risk without being visually perceivable yet. Then, we predict a worst-case trajectory in the survival analysis for collision risk estimation. Resulting risk indicators are utilized to evaluate the driver's current behavior, to warn the driver in critical situations, to give suggestions on how to act safely or to plan safe trajectories. We validate our approach by applying the resulting intersection warning system on real world scenarios. The proposed system's behavior reveals to mimic the general behavior of a correctly acting human driver.
The survival analysis of driving trajectories allows for holistic evaluations of car-related risks caused by collisions or curvy roads. This analysis has advantages over common Time-To-X indicators, such as its predictive and probabilistic nature. However, so far, the theoretical risks have not been demonstrated in real-world environments. In this paper, we therefore present Risk Maps (RM) for online warning support in situations with forced lane changes, due to the end of roads.For this purpose, we first unify sensor data in a Relational Local Dynamic Map (R-LDM). RM is afterwards able to be run in real-time and efficiently probes a range of situations in order to determine risk-minimizing behaviors. Hereby, we focus on the improvement of uncertainty-awareness and transparency of the system. Risk, utility and comfort costs are included in a single formula and are intuitively visualized to the driver.In the conducted experiments, a low-cost sensor setup with a GNSS receiver for localization and multiple cameras for object detection are leveraged. The final system is successfully applied on two-lane roads and recommends lane change advices, which are separated in gap and no-gap indications. These results are promising and present an important step towards interpretable safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.