The future of e-mobility will consist of a large number of connected electric vehicles, smart charging stations and information systems at the intersection of electricity and mobility sector. When engineering and integrating the multitude of systems into even more complex systems-of-systems for e-mobility, interoperability and complexity handling are vital. Model-based system architectures support the engineering process of information systems with the concepts of abstraction, reduction and separation of concerns. In this paper, we contribute to the research body, by extracting requirements for managing complexity and interoperability of these systems. Further, a comparative analysis of the state-of-the-art in existing architecture models and frameworks for e-mobility is conducted. Based on the identified gaps in existing research, we propose the E-Mobility Systems Architecture (EMSA) Model, a three-dimensional systems architecture model for the e-mobility sector. Its structure originates from the well-established Smart Grid Architecture Model. We further allocate all relevant entities from the e-mobility sector to the EMSA dimensions, including a harmonized role model, functional reference architecture, component and systems allocation, as well as a mapping of data standards and communication protocols. The model then is validated qualitatively and quantitatively against the requirements with a case study approach. Our evaluation shows that the EMSA Model fulfills all requirements regarding the management of complexity and ensuring interoperability. From the case study, we further identify gaps in current data model standardization for e-mobility.
In this paper, we propose a model-based system architecture for an interoperable blockchain-based local energy market for prosumers in a residential microgrid setting. Based on the Smart Grid Architecture Model our analysis deduced 21 organizational, informational, technical and blockchain requirements for a local energy market and its underlying information system. These are evaluated in the Landau Microgrid case study. We derive, that a clear value proposition for the key stakeholders, standardization of data exchange and communication, and a suitable physical implementation are the major challenges.
The charging infrastructure for electric vehicles faces the challenges of insufficient capacity and long charging duration. These challenges decrease the electric vehicle users’ satisfaction and lower the profits of infrastructure providers. Reservation systems can mitigate these issues. We introduce a reference architecture for interoperable reservation systems. The advantages of the proposed architecture are: it (1) considers the needs of the most relevant electric mobility stakeholders, (2) satisfies the interoperability requirements of existing technological heterogeneity, and (3) provides a classification of reservation types based on a morphological methodology. We instantiate the reference architecture and verify its interoperability and fulfillment of stakeholder requirements. Further, we demonstrate a proof-of-concept by instantiating and implementing an ad-hoc reservation approach. Our validation was based on simulations of real-world case studies for various reservation deployments in the Netherlands. We conclude that, in certain high demand situations, reservations can save significant time for electric vehicle trips. The findings indicate that a reservation system does not directly increase the utilization of the charging infrastructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.