Our study demonstrates the application of CAP in the treatment of oral pathologies suggesting a promising future treatment approach.
In regenerative concepts, the potential of adult stem cells holds great promise concerning an individualized therapeutic approach. These cells provide renewable progenitor cells to replace aged tissue, and play a significant role in tissue repair and regeneration. In this investigation, the characteristics of different types of adipose tissue are analysed systematically with special attention to their proliferation and differentiation potential concerning the angiogenic and osteogenic lineage. Tissue samples from subcutaneous, visceral, and omental fat were processed according to standard procedures. The cells were characterized and cultivated under suitable conditions for osteogenic and angiogenic cell culture. The development of the different cell cultures as well as their differentiation were analysed morphologically and immunohistochemically from cell passages P1 to P12. Harvesting and isolation of multipotent cells from all three tissue types could be performed reproducibly. The cultivation of these cells under osteogenic conditions led to a morphological and immunohistochemical differentiation; mineralization could be detected. The most stable results were observed for the cells of subcutaneous origin. An osteogenic differentiation from adipose-derived cells from all analysed fatty tissues can be achieved easily and reproducibly. In therapeutic concepts including angiogenic regeneration, adipose-derived cells from subcutaneous tissue provide the optimal cellular base.
BackgroundAdult stem cells appear to be a promising subject for tissue engineering, representing an individual material for regeneration of aged and damaged cells. Especially adipose derived stromal cells (ADSC), which are easily to achieve, allow an encouraging perspective due to their capability of differentiating into miscellaneous cell types. Here we describe the in vitro formation of human subcutaneous, visceral and omental ADSC micromasses and compare their histological attributes while being cultivated on collagen membranes.MethodsSubcutaneous, visceral and omental fat tissue derived cells were isolated and processed according to standard protocols. Positively stained cells for CD13, CD44 and CD90 were cultivated on agarose in order to study micromass formation using a special method of cell tracking. Stained paraffin-embedded micromasses were analysed morphologically before and after being plated on collagen membranes.ResultsThe micromass formation process was similar in all three tissue types. Subcutaneous fat tissue derived micromasses turned out to develop a more homogeneous and compact shape than visceral and omental tissue. Nevertheless all micromasses adhered to collagen membranes with visible spreading of cells. The immune histochemical (IHC) staining of subcutaneous, visceral and omental ADSC micromasses shows a constant expression of CD13 and a decrease of CD44 and CD 90 expression within 28 days. After that period, omental fat cells don’t show any expression of CD44.ConclusionIn conclusion micromass formation and cultivation of all analysed fat tissues can be achieved, subcutaneous cells appearing to be the best material for regenerative concepts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.