SUMMARY1. The release of [3H]dopamine (DA) in response to inhibition of the Na+ pump or to intracellular acid load was studied in rabbit carotid bodies (CB) previously incubated with the precursor [3H]tyrosine. The ionic requirements of the release response and the involvement of specific ion transport systems were investigated.2. Inhibition of the Na+ pump, by incubating the CB with ouabain or in K+-free medium, evokes a DA release response which requires the presence of Na+ and Ca2+ in the medium and is insensitive to nisoldipine. This suggests that the response is triggered by entry of external Ca2+ through Na+-Ca2+ exchange, a consequence of the increase in intracellular Na+ resulting from inhibition of the pump.3. Incubation of the CB in medium equilibrated with 20% CO2 at pH 6-6, or in medium containing the protonophore dinitrophenol (DNP) or the weak acid propionate, elicits a DA release response which requires also the presence of Na+ and Ca2+ in the medium and is insensitive to dihydropyridines.4. Ethylisopropylamiloride (EIPA), an inhibitor of the Na+-H+ exchanger, markedly decreases the release response elicited by DNP or propionate in bicarbonate-free medium, but has not any effect in bicarbonate-buffered medium. In the latter condition, the EIPA-insensitive release of DA is inhibited by reducing the HC03-concentration in the medium to 2 mm or by removal of Cl-, suggesting that in bicarbonate-buffered medium a Na+-dependent HC03--Cl-exchanger is involved in the release response.5. It is concluded that the release of DA by the chemoreceptor cells in response to acidic stimulation is triggered by entry of external Ca2+ through Na+-Ca2+ exchange. This exchange is promoted by the increase of intracellular Na+ that results from the operation of Na+-coupled H+-extruding mechanisms activated by the acid load.
Short-term cell cultures were obtained from enzymatically dissociated carotid bodies from adult rabbits, and morphological and functional characterization of the cultured chemoreceptor cells were carried out. Under phase contrast, freshly isolated type I cells are round, bright, and 10-14 microns in diameter and exhibit strong fluorescence when stained with the glyoxylic acid technique. The content of endogenous dopamine in the cultures increased from 80 pmol/10(5) cells 2 h after plating the cells to 200 pmol/10(5) cells on the 3rd day, and the rate of synthesis and storage of [3H]dopamine from the precursor [3H]tyrosine increased from 1.7 pmol.10(5) cells-1.h-1 in 1-day cultures to 4 pmol.10(5) cells-1.h-1 on the 3rd day; the later values represent 80-85% of the expected values for the intact carotid body. After labeling with [3H]tyrosine, cultured chemoreceptor cells release [3H]dopamine when challenged by hypoxia, high external K+, or the protonophore dinitrophenol, the pattern of response being similar to that of the intact carotid body. When studied by whole cell clamp recording, individual chemoreceptor cells exhibit a marked variability in the properties of some ionic currents; the data, however, do not support the existence of distinct subpopulations of type I cells.
The role played by Na+ channels of carotid body (CB) chemoreceptor cells was investigated by studying the effects of tetrodotoxin (TTX) on the release of 3H-labeled catecholamines ([3H]CA) by adult rabbit CBs previously incubated with the precursor [3H]tyrosine. TTX inhibited partially the release of [3H]CA elicited by mild hypoxia (10 or 7% O2) or by depolarizing incubation medium containing 20 or 30 mM KCl, but the response to more intense hypoxia (5 or 2% O2) or to higher KCl concentration (40 or 50 mM) was not significantly affected. The release of [3H]CA elicited by acidic stimuli, either 20% CO2 (pH 6.6) or the protonophore dinitrophenol (100 microM), although comparable in magnitude to that elicited by mild hypoxia, was not modified by TTX. These results provide evidence for the first time that Na+ channels of chemoreceptor cells participate in the transduction of hypoxic stimuli into the neurotransmitter release response of these cells and suggest that Na+ current operates as an amplifying device that enhances the initial cell depolarization mediated by the closure of the O2-sensitive K+ channels. Sympathetic denervation of CBs was followed by a marked reduction in the release of [3H]CA elicited by veratridine or by 20 mM KCl, suggesting that the number of Na+ channels in chemoreceptor cells decreases after denervation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.